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This book is about intelligence, embodied intelligence—and it is about a paradigm
shift, a shift from a computational view of intelligence, thinking and cognition, to
one that takes the complete organism—brain, body and environment—into account.
As we know from Thomas Kuhn’s famous book, “The structure of scientific revo-
lutions”, paradigm shifts do not occur instantaneously, but the process is a long and
tedious one that happens at different levels and it takes a lot of time before a new
consensus can be reached. There have been a large number of books and publica-
tions arguing, essentially from a conceptual, philosophical, or a biological stance,
why computation is in many ways inappropriate to explain the behavior of sys-
tems in the real world and that completely novel approaches are needed. 25 years
after the appearance of Rodney Brooks’ seminal article with the innocuous title
“A robust layered control system for a mobile robot,” in a sense the manifesto for
the famous ‘subsumption architecture,’ which, in the fields of Artificial Intelligence
and robotics, marked the starting point of the “embodied turn,” there is increasing
consensus that embodied intelligence is the new paradigm, not only in AI, but in
psychology, philosophy, and the neurosciences.

While most of the arguments in favor of an embodied perspective on intelligence
are intuitively plausible and easy to understand, there is a definite lack of scientific
theory, rigor, and methodology. Take, for example, the concept of sensory-motor
contingencies as introduced by O’Regan and Noë a decade ago, the idea that there
are law-like relations between the actions of an agent and associated changes in
sensory stimulation (which depend on the environment as well as the morpholog-
ical and material properties of the organism), which is intuitively very plausible
and is by now generally accepted. However, at this point, it is still open how an
in-depth mathematical treatment that captures all these relationships could be de-
veloped. Moreover, in the literature, in particular in robotics and artificial intelli-
gence, rather superficial notions of embodiment are floating around that might be
characterized by the slogan “intelligence requires a body.” Many researchers were
and still are convinced that if you simply use a robot into which you embed your
otherwise traditional control algorithms, you have an embodied system. But embod-
iment is much more than that: it is not merely about having a body, but it is about the
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interrelationship between body, interaction with the environment, and information.
After all, the body with its motor and sensory systems is the only way in which we
can learn something about the environment, in other words, any interaction with the
world is mediated by the body. In addition, rather than having to be controlled by
a centralized “brain” or computational system, the body can be exploited for move-
ment and locomotion: the elasticity in the muscles, and the compliance in a robotic
device can take over part of the functionality of coping with impact in walking or
running. Or the morphology and the material properties of the hand-arm-shoulder
system, in particular the soft, deformable tissue in the palm and the finger tips, ac-
count for easy grasping of hard objects like glasses and cups in front of us with little
control. We could go on for a long time.

But now that we are convinced that there is a real need for an “embodied turn,”
we have to think about how to proceed from here, how to develop a better under-
standing and a methodology of how to design and build embodied systems. Here,
we can draw on knowledge in the areas of biology, in particular evolutionary the-
ory, biomechanics, behavioral ethology, and neuroscience. Powerful concepts such
as self-organization, complex systems, emergence, and the idea of sensory-motor
contingencies mentioned above, promise to enhance our understanding of biolog-
ical systems and bear the potential of being transferred to the design of artificial
ones. However, the application of these principles to the design of robots and other
devices, has proven much more difficult than initially anticipated. One of the big
conundrums of research in the cognitive sciences and artificial intelligence has been
and still is how creatures are motivated to do things and alternatively how we can
design artificial systems that behave in seemingly goal-directed ways, without hav-
ing to program the goal-directed behavior explicitly into the artifacts (as we would
have done in the traditional approach). In the late 1980s, Luc Steels coined the
term “design for emergence”: Given a particular set of desired functionalities, e.g.
a group of agents behaving in a swarm-like fashion, how can we design the system
such that its behavior emerges as it interacts with its environment, including other
agents? Guided self-organization is a potent principle that enables the exploitation
of phenomena of self-organization to achieve desired functionalities in robotic de-
vices, an efficient and robust engineering method—one solution to “designing for
emergence.”

Ralf Der and Georg Martius with their book “The playful machine” target pre-
cisely these issues by mustering the entire gamut of concepts and formal mathemat-
ical “machinery” like complex dynamics, self-organization, embodiment, homeo-
stasis—and its later development, homeokinesis which, in addition to stability, pro-
vides a notion of intrinsic motivation—bifurcations, and various oscillator regimes,
in order to design and build robots that are self-exploratory, self-motivated, situated,
and adaptive. These machines are shown to display many surprising behaviors that
are truly emergent from control, morphology, and environment, in the sense that
they have not been programmed into their behavioral algorithms. The spirit of de-
signing robots in this way, is completely different from the standard way where we
have a particular goal, a set of tasks, in mind and we design the devices such that
they are most likely to actually perform the tasks in an efficient, cheap and robust
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way: it is indeed the playful robots. And why playful robots? There are many hy-
potheses, but one of the main purposes of play seems to be to practice and explore
novel skills in a protected environment so that they can be used in the real – serious
– world at a later point in time. Because of the missing top-down goal-directedness
normally imposed by the engineers, the robots need to be designed such that they
are self-motivated to engage in play and that they can learn novel behaviors. In or-
der for the playful robot scenario to work, the robots themselves must be motivated
to engage in tasks and behaviors of ever increasing complexity. If done right, the
competences acquired during playful behavior will generalize and transfer to other
environments precisely because they are not task-specific. Note that this is very dif-
ferent from merely avoiding being damaged or coping with external perturbations;
in this latter case, often the best strategy is to simply do nothing, a phenomenon
called the “lazy robot” effect—to be prevented by all means.

In a sense, the book reflects its title: it is itself playful and self-motivating. In
addition to the theoretical framework and conceptual discussions, the mathemati-
cal background and many examples of model robots, of real devices, and simulated
creatures are presented. But even more, the whole book comes with lots of software
with simulations, examples, and case studies that invite the reader to play around
in order to get into the spirit of the “playful machine.” With their seminal contri-
bution, Der and Martius have not only substantially advanced the field of embodied
intelligence, design for emergence, and robotics in general, but they have given it the
rigor which it deserves as a scientific discipline: through their work, they have on the
one hand accelerated the paradigm shift towards embodied intelligence, and on the
other hand they have made inroads by demonstrating how existing methods in math-
ematics, dynamical systems, and engineering design, can be applied to this new and
exciting perspective. We may in fact be at the beginning of a new revolution: What
Bill Gates forcefully requested in his famous article in Scientific American in 2007:
“A robot in every home!” (just as he demanded 20 years ago: “A computer in every
home”), may in fact materialize sooner than we think. Der and Martius have deci-
sively moved the field in this direction. What we, the community, need to do now,
is to popularize it and make it accessible to a broad audience not only of engineer-
ing and computer science experts, but of biologists, neuroscientists, psychologists,
philosophers, teachers at all levels, and to people simply interested in novel ideas
and technological developments. I’m sure that you, the reader, will be thoroughly
enjoying the book and that you will draw intellectual benefit and satisfaction from
it. But beware—it may change the way you have been thinking about the world and
yourself so far in unanticipated ways—and this process will be irreversible!

Someo, Valle Maggia, Switzerland, September 2011 Rolf Pfeifer
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Imagine a world of artificial creatures living in a kind of paradise. These creatures
would have unlimited access to resources (electrical current), they may live in a
richly structured environment, are potentially immortal, and are not subject to any
external pressure for development. The cushy situation in this robotic “paradise”
gives rise to a nasty question that is the actual seed for this book: without any given
task, goal, purpose, or other external pressures, why should such a creature do any-
thing at all? Moreover, if there is no goal, no purpose, no plan, what can we expect
the system to do? Will the resulting behaviors (if there ever is one) be arbitrary or
will they relate to the specific nature of the physical system?

When trying to find an answer many routes are possible. You may focus on philo-
sophical questions regarding free will or the existence of a machine-self; you may
come across important challenges of modern robotics concerning intrinsic motiva-
tion, self-learning, or artificial curiosity; and you may end up with thinking about
the very roots of autonomy and self-determination. The book faces the problem in a
practical way by formulating a general principle—homeokinesis—that is unspecific,
unbiased, surprisingly simple, completely internal to the agent, and fully operational
on concrete robotic systems of high complexity.

As you will see when reading the book or doing the experiments, this general
principle makes machines discover their behavioral variety in a playful individual
development. The emerging activities, while being many and varied, are seen to
be related to the physical properties of the body and environment so that the robot
discovers the most natural modes that are accessible to him by minimal control.
While this completely self-determined behavior generation may also help in the
future to answer the more philosophical questions, it will in the short term provide
very down-to-earth consequences. In particular, as we have learned from the field
of embodied AI, behavior generation in complex robotic objects is improved and
stabilized by taking brain, body, and environment as a whole. The playful unfolding
of behavioral patterns offers a new way of getting the embodiment of the agent
involved.

In a wider context, potential benefits are foreseeable when taking a new attitude
to robotics, leaving the fixation on a specific goal aside in the beginning of a be-
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havioral design process. Instead, comparable to a liberalist concept of education,
we let the machines play freely, giving them a chance to demonstrate their potential
capabilities. As a second step, we may try to gently guide the free play into desired
directions, and it is only in a third step that the emerging behaviors could be valued
and stored for later use in behavioral architectures following prescribed goals. The
methods for autonomous development presented in this book are a first step towards
this very practical goal and they might help in the future to overcome the enormous
difficulties in the behavior generation of complex systems.

Given the practical orientation of the book, the reader is invited to enjoy the nu-
merous videos at http://playfulmachines.com demonstrating the specific appli-
cations and/or doing experiments using the simulator that comes with the book. You
will find nearly 30 experiments ranging from simple systems in low-dimensional
sensorimotor loops to the robotic zoo with creatures such as snakes, dogs, and hu-
manoids in a highly complex virtual, but physically realistic world. Hopefully this
will also help to understand the theoretical considerations based on dynamical sys-
tems theory.

The book is intended for students and researchers interested in self-organization
on both the practical and theoretical level. It should also be of interest for direct
practical application since the controller with the homeokinetic learning algorithm
can easily be connected to any real robot, helping it to a playful self-exploration
of its behavioral variety. In combination with the experiments, the book also offers
itself as an undergraduate or graduate course on self-organization and the dynamical
systems approach to robotics.
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Introduction

Robots and their relation to mankind have taken a long and diversified development.
Starting from the romantic desire to have a workmate and/or playmate centuries ago,
the modern history of robot control starts with the birth of artificial intelligence (AI)
about 50 years ago. In the hype of that time, robots were considered as machines
under total control of an artificial intelligence thought to understand the world and
the physics of the body well enough in order to control the robot by a set of rules
defining its behavior.

Subsequent developments have generated on the one hand the marvelous ma-
chines welding, mounting, and painting cars, but, on the other hand, also the bitter
insight that the complexity of the world exceeds by far the scope of the internal mod-
els necessary for the AI approach. Even now, after 50 years, behavioral skills of the
most advanced robots are far behind that of any insect. The rethinking began more
than two decades ago, prompting a drastic change of paradigms in the control of au-
tonomous robots [25, 26]. The new or embodied AI recognizes the role of the body
as an equal partner in the control process. The exploitation of the specific properties
of the body, sometimes called morphological computation [132], not only reduces
the computational load on the controller in specific tasks like walking or swimming
but also leads to smoother and more natural motions of the robot, see [131, 136]
for a comprehensive and inspiring presentation of these ideas. The research has pro-
duced many successful and inspiring results. Of particular importance is the attempt
to understand more about intelligence when using the embodiment approach.

Although quite successful, the method seems to be restricted to specific tasks
and requires an inspired designer for the “morphological computer,” instead of the
intelligent programmer of the classical AI systems. Moreover, a general theoretical
foundation is still missing. In our view, the achieved results suggest a next step on
the way that gives machines more and more autonomy. Our ambition is to make the
machines discover their behavioral options in a playful individual development in
the first place and to look only afterwards for uses of the emerging behavioral op-
tions. Different from developmental robotics [97, 179], our approach is not focused
so much on mental development but on the playful unfolding of the sensorimotor
contingencies that form the basis for mental development.

1
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Why Activity

In order to make this idea more concrete, let us formulate it in a casual way. As
introduced in the Preface, let us consider robots in a kind of paradise, instead of
a world driven by needs. With unlimited access to resources and without any given
task, goal, purpose, or other pressures why should such a creature do anything at all?
Borrowing from psychology, we may call this the problem of self-actualization1.

Besides being of practical interest, self-actualization (at any level of the behav-
ioral hierarchy) is also of principal interest in modern biology, artificial intelligence,
and robotics. For instance, robotics and embodied AI both are in quest of features
ranging from artificial curiosity to internal motivation to the very emergence of a
machine-self. In biology this problem is related to the origin and realization of be-
havioral variability under identical circumstances (a question that is discussed much
in connection with establishing free will as a biological trait, see [24] for a review).

There are some approaches known from the literature. One is making use of in-
formation theory. Considering the robot with its brain as an information processing
system, the optimization of information flows might be an option. So far, different
information measures have been shown to drive the robot to self-induced activity.
Examples are empowerment [83, 87, 148] or predictive information [19] in the flow
of sensor values the robot induces by its behavior [10, 162, 191]. While of high gen-
erality, the application of these principles is hindered by excessive sampling costs.
Information theory also allows for the formalization of conceptual terms like auton-
omy [17, 18], which may help in developing truly autonomous systems. Other gen-
eral paradigms like Autopoiesis [109], although very intellectually appealing and
helpful in describing the fundamental nature of living systems, are not constructive
enough so that they are difficult to operationalize.

More concrete approaches address the question of artificial curiosity or intrinsic
motivation in reinforcement learning. Pioneering work has been done by Schmid-
huber using the prediction error as a reward signal in order to make the robot cu-
rious for new experiences [150]. The approach has been further developed in a
number of papers, see e. g. [151, 164]. Related ideas have been put forward in
the so called playground experiment by Kaplan and Oudeyer [85, 117], using the
learning progress as a reward signal. Steels [157] proposes the Autotelic Principle,
i. e. the balance of skill and challenge of behavioral components as the motivation
for open ended development. This are interesting and encouraging developments to-
wards agents with an internal, self-determined drive for activity. However, so far the
developments are rather application related and require a convenient pre-structuring
of state-action spaces whenever the systems are getting more complex. Information
theory, while being domain invariant, is restricted in applicability by its tremendous
sampling costs.

1 However, different from psychology we will use this term not at the mental but at the sensorimotor
level, meaning the self-determined unfolding of sensorimotor contingencies instead of the strive for
personal growth and fulfillment in the sense of Maslow´s “what a man can be, he must be” [108].
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The Machines

Our approach to self-actualization is not philosophical but practical, aiming at the
creation of a universal concept that can be operationalized and tested in complex
robotic objects. Our approach is machine driven. So, before formulating the general
principle let us have a closer look at the kind of machines we are interested in. The
different strands of development in robotics and AI have produced very different
kinds of robots. On the one side of the spectrum, there is the highly sophisticated
machine for the reliable execution of motion plans like complicated dance moves,
see Fig. 1.1(a).

(a) (b)

Fig. 1.1: Two different worlds of robots. (a) Sony robot QRIO dancing. These robots
in an ideal manner realize the dream of having a machine that is authentic in executing a
given motion plan. (b) Anthropomimetic robot ECCEROBOT. Instead of just mimicking
the shape of the human body the compliantly designed robot tries to copy also the inner
structure and mechanisms made up by bones, joints, muscles and tendons. In this way, it
has the potential for human-like action and interaction with the world. This is considered
the main prerequisite for the emergence of human-like intelligence. Images included with
kind permission of (a) PC Watch [126] and (b) R. Knight [169].

On the other side, we find machines, like for instance the anthropomimetic EC-
CEROBOT in Fig. 1.1(b), designed to reflect the morphology of the human body
as closely as possible. Copying the internal structure and mechanisms made up of
bones, joints, muscles and tendons, these machines are compliant to the influence of
external forces and intra-body couplings in a similar way as humans are. There are
severe practical reasons for considering such machines. For instance in health care,
service robots are to behave human-like and in particular should not react rigidly in
encounters with humans. Moreover, they also have a high intellectual appeal, cumu-
lating in the question whether the human-like body shapes cognitive processing into
human-like dimensions.
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It is in these compliant machines where the principles of embodied robotics find
their real playground. In fact, robots of that kind are a nightmare to any classical
control approach and there is no chance for anything like classical AI realization,
based on planning and a concrete world model, under these circumstances. Instead,
the controller is challenged to maximally exploit the physical peculiarities of the
body in its interaction with the environment. However, even in the embodied AI
approach, the control of such systems is still in its infancy.

Compliant machines are the target group of this book, using however an extended
concept of compliance. Compliance can be extended to the way the robot is related
to its environment. In fact, we will introduce the notion of an extended body so that
we can have a “rigid” robot (like Sony’s Qrio) surrounded virtually by a compliant
sphere provided by its sensors.

The robots studied in this book are simpler than the ECCEROBOT but we claim
that they share many features and fundamental challenges with the latter. Let us
demonstrate the parallels by one of our machines, the SPHERICAL, or its simpler
variant, the BARREL, both being driven by an internal mechanism for shifting the
robot’s center of gravity, see Fig. 1.2. Rolling is the most natural but by far not the
only form of motion of this physical system. As demonstrated in experiments, while
stable rolling modes can be excited by very simple closed loop controllers even on
structured grounds, the execution of a motion plan, formulated in the space of the
motor commands, may become quite complicated.

In this kind of machine, obviously there are specific patterns of behavior that,
while singled out by a certain complexity, are achievable with minimal control. So,
the idea is not to force the body into a specific behavior but to come into a kind of

(a) (b)

Fig. 1.2: Robots dominated by embodiment. Two robots arguably matching the concep-
tual level of the anthropomimetic robots. The robots locomote by shifting their internal
masses defining the center of gravity. The only sensor values are the inclination of the
axes. As with ECCEROBOT, there are no single actions with definite consequences, even
in the probabilistic sense. Instead, each action, a motion of the internal weights, produces
a whole body reaction that depends on the current physical state of the mechanical sys-
tem. (a) The BARREL, a physical system with 8 degrees of freedom. If simply rolling,
the number of degrees of freedom reduces by 4. (b) The SPHERICAL has only one addi-
tional degree of freedom, the third internal mass, but displays much more complex motion
patterns due to its different physical properties.
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functional resonance with its specific physical properties. This is the point where
the different machines pose the same challenge: feeling the body instead of forcing
it is a indispensable prerequisite for any successful control paradigm. Of course,
there are differences in the level of complexity and in the scientific questions. In
particular, when looking for the roots of human like intelligence, the SPHERICAL
probably can not make a real contribution.

Facing the Unknown

Now we can return to our original question. Keeping to the example of the sphere,
why should a controller try at all to start shifting the internal weights so that the
robot is driven into moving? And what can a general principle look like that drives
the brain to find out about the most natural modes of behavior and the ways it can
excite them? This book presents a solution that is based on the dynamical systems
approach, thereby working with continuous state-action spaces right from the outset.
We realize the brain of the robot by two neural networks, one for control and the sec-
ond one acting as an internal forward model, predicting the next sensor state based
on the present sensor and motor values. However, in contrast to classical AI, we do
not use the model for planning ahead. Instead, by its prediction error, the model just
quantifies the ability of the brain to look ahead, separating in this way the knowable
components of the sensorimotor dynamics from what we call the unknown.

In these terms, a self-determined and explorative behavior can be understood
as ways of facing the unknown. A naive way of doing so would be to “get things
under control,” i. e. adapt behavior in order to reduce the influence of the unknown
on the future evolution of the system. However, in our robot paradise, this principle
generates in most cases systems that self-regulate into a “do nothing” behavior. This
“lazy robot effect” is easily understood by the fact that the consequences of doing
nothing are perfectly predictable, in a static environment at least.

The astonishingly simple solution to that problem is found in a new representa-
tion of the unknown. Technically this amounts to replacing the prediction error with
its time inverted counterpart, the reconstruction or time-loop error.

Homeokinesis

Facing the unknown is now defined as a continual process of adaptation directed to-
wards reducing the size of the time-loop error. This book will show that this method
not only solves the lazy robot problem but also provides a systematic approach to
the self-determined individual development of embodied and compliant robots. The
minimization of the time-loop error is shown to generate a common kinetic regime,
called “homeokinesis”, jointly involving the physical, the neural, and the synaptic
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processes of the artificial brain-body system formed by the robot and its controlling
unit.

We show both theoretically and in many applications that homeokinesis is a fruit-
ful solution to the problem of self-actualization and realizes in a systematic way the
playful self-exploration of complex robotic objects. In the example of the spher-
ical robot we observe that the homeokinetic brain excites the most stable rolling
modes if running on a level surface, changes between modes in a self-determined
manner, and finds another adequate rolling mode if in a spherical basin. These re-
sults propagate through to other robots with always the same findings—emerging
search and the playful exploration of complex motion patterns with high sensorimo-
tor coordination. Surprise is one of the inherent features of homeokinesis. In many
cases we were witnessing the emergence of quite unexpected behaviors, e. g. various
wrestling scenarios if two humanoid robots come into closer contact.

The approach to a self-organized, playful exploration of robot behavior is, in its
concrete realization, based on many novelties making the principle applicable to a
broad variety of robots with only minor changes. In particular, we realize a real-time
application to high dimensional systems of many active degrees of freedom.

Guided Self-Organization

Without any purpose or goal, the emerging motion patterns are contingent, meaning
many and varied, and transient by nature. This is vital for a developing system but
less attractive from the practical point of view. The book also introduces a new
research field, called guided self-organization, showing how external influences can
be integrated in order to guide the self-organization into given directions, like the
emergence of specific locomotion patterns. We introduce and investigate in practical
applications several guidance principles, giving guidance for instance by directly
influencing the motor patterns, by phase relations inducing symmetry breaking, or
by rewards.

How to Use the Book

Besides conveying conceptual and theoretical foundations for the world of playful
machines the book aims at making the reader interested in doing their own exper-
iments. Therefore, the book comes with a demonstration software using our fully
fledged robot simulator called LPZROBOTS and numerous suggestions for experi-
ments scattered throughout the book. The software can be downloaded for free from
http://www.playfulmachines.com. Furthermore, we demonstrate our re-
sults by a large number of videos that can be watched at the same site. For illustra-
tion the videos are referenced in the book with a single image or a series of frames,
however the captions are referring to the entire video clips.

http://www.playfulmachines.com
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The book is written on different levels of detail. Most chapters are organized
such that they start with the more basic content and dive deeper and deeper into the
details. So you may choose your own level by skipping later parts of the chapters.
To better digest the theoretical content you can also at any time procrastinate your
study by playing around with the experiments. They can run for hours while you
read the book and you may come back to see what happened.

The mathematics may appear a bit hard at the beginning, but don’t panic! Par-
ticularly hard sections are marked with a ∗ sign and are intended for advanced study.

Organization of the Book

We start in Chap. 2 with a condensed introduction to self-organization phenomena
in nature and machines as they are known from the literature. We have included this
chapter in order to give the reader some background on the basic mechanisms of
self-organization, since the latter are helpful for understanding the specific proper-
ties of homeokinetic systems.

Special to our approach is what we call the externalization of complexity. While
using extremely simple structures for both internal model and controller, the behav-
ioral patterns generated by our approach are of a highly complex nature. The very
basis of that phenomenon is the use of closed loop control in a tight sensorimotor
coupling. This is explained in detail in Chap. 3. Moreover, we use extremely fast
learning procedures so that both model and controller are relearning if situations
change, i. e. we replace internal complexity with flexibility.

Chapter 4 gives some theory and illustrative examples for the interplay between
model and controller, demonstrating thereby the “lazy robot effect” that appears here
in a kind of self-regulated stability. This phenomenon is considered in the historical
context of homeostasis.

The subsequent Chap. 5 introduces homeokinesis on the basis of the time-loop er-
ror and its use for the self-organization of control. Homeokinetic learning by gradi-
ent descending the time-loop error is shown to generate a specific dynamical regime
of the brain-body system that gives the synaptic dynamics a primary functional role
in behavior generation.

In Chaps. 6 and 7 we give an analytical investigation of homeokinesis as a self-
referential dynamical system. Chapter 8 gives first applications focusing on specific
features like the role of symmetries, spontaneity, and the emergence of specific em-
bodiment effects in both simulated and real robots with only two motors but many
physical degrees of freedom. The often surprising effects may be interpreted as a
kind of arousal of the most natural motion patterns latent in the physical system.

Chapter 9 is concerned with another unique feature of our approach, namely the
bootstrapping of both model and controller from scratch, i. e. if starting from our
general initialization of “do nothing” and “know nothing.” Moreover, it introduces
the cognitive deprivation effect and shows how systems can recover from the depri-
vation by the homeokinetic learning process.
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The specific phenomena observed in the low-dimensional systems, the excitation
of latent whole body modes in particular, find their counterpart also in the high-di-
mensional examples considered in Chap. 10. These complex robots are the actual
target group of homeokinesis. Therefore, we try to present a broad spectrum of dif-
ferent robotic systems subject to homeokinetic control. In all examples we observe
complex motion patterns with high sensorimotor coordination emerging, so to say,
out of nothing, demonstrating the playfulness of these machines under the homeo-
kinetic control paradigm.

This chapter is followed by an alternative approach to homeokinesis, based on a
novel representation of the sensorimotor dynamics that we call the interaction rep-
resentation. Besides giving an additional motivation for homeokinesis, this chapter
will extend the considerations to the case of several time steps and will eventually
consider infinite time horizons making contact with the global Lyapunov exponents
and chaos theory. The chapter is a little more mathematically demanding, which is
the reason for locating it after the concrete applications.

As mentioned above, a serious practical concern is to find ways for guiding self-
organization towards specific goals. The results obtained so far in this novel di-
rection of research are presented in Chap. 12 through Chap. 14, giving both the
methodological ideas, concrete realizations, and a first analysis of concrete applica-
tions.

Details on the realization and several extensions of the algorithm are presented in
Chap. 15. Although many of the algorithmic details are already referenced in earlier
chapters, we have pushed this chapter towards the end of the book in order not to
burden the reader with too much details for a first reading. The same is true for
Chap. 16 devoted to a detailed description of the LPZROBOTS simulator that is the
basis for all experiments in the virtual worlds proposed in the book.
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Self-Organization in Nature and Machines

Abstract: Self-organization in the sense used in natural sciences means the spontaneous
creation of patterns in space and/or time in dissipative systems consisting of many individ-
ual components. Central in this context is the notion of emergence meaning the spontaneous
creation of structures or functions that are not directly explainable from the interactions
between the constituents of the system. This chapter presents at first several examples of
prominent self-organizing systems in nature with the aim to identify the underlying mech-
anisms. While self-organization in natural systems shares a common scheme, self-orga-
nization in machines is more diversified. An exception is swarm robotics because of the
similarity to a system of many constituents interacting via local laws as encountered in
physics (particles), biology (insects), and technology (robots). This chapter aims at provid-
ing a common basis for a translation of self-organization effects to single robots considered
as complex physical systems consisting of many constituents that are constraining each
other in an intensive manner.

Self-organization is a ubiquitous phenomenon observed in many complex sys-
tems in the fields of physics, chemistry, computer science, economics, and biology.
While synergetics provides a general theoretical framework for the wide field of
such phenomena [60, 62, 182] there are many examples that are controversial and
difficult to fit into a quantitative explanatory system [139]. This chapter will not try
to shed new light onto this research field but instead work out by way of examples
the most prominent features and underlying mechanisms of self-organizing systems
in nature and machines. Once identified, these mechanisms may serve as a guiding
principle for autonomous robot development.

After identifying one cornerstone—self-amplification—by the example of spon-
taneous magnetization (Sect. 2.1.1), we are going to study systems as different as
convection patterns (Sect. 2.1.2), reaction diffusion systems (Sect. 2.1.3), and Turing
patterns (Sect. 2.1.2) in order to understand the role of symmetries and spontaneous
symmetry breaking, the second corner stone of self-organization.

After giving examples from biology (Sect. 2.1.4) that may help to understand
the comprehensive nature of the general scheme, we will consider swarm robotics
(Sect. 2.2.1) because of its close relationship to biology. Further fields of robotic
research are related to self-organization only in a more distant way. We discuss in
particular the research in artificial evolution in Sect. 2.2.2.

9
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Let us start with the self-organization phenomena in physics since they are very
clear cut.

2.1 Self-Organization — The Physical Perspective

There are common features of self-organization that are shared by many examples
in physics. The most essential ingredient in a self-organization scenario is the effect
of self-amplification of small perturbations. Let us work out this in a simple case.

2.1.1 Phase Transitions

Many self-organization phenomena happen at phase transitions. A prominent exam-
ple is the spontaneous magnetization in ferromagnetic materials [30]. These mate-
rials consist of a field of spins, which may be consider as little magnets. At high
temperatures their orientation is random due to thermal fluctuations. The system
could be given an order from outside by applying an external magnetic field that
forces the magnets to orient.

However, even without the external field, when lowering the temperature below a
critical value Tc, there is a phase transition to a magnetic domain structure consisting
of clusters of aligned magnets. How can this be without any external guidance? The
explanation rests on then “willingness” of the magnets to align along a given field.
The thermal fluctuations are still active also below Tc and may create small clusters
of aligned magnets by chance. However, such a micro-cluster acts like a little mag-
net that may force neighboring magnets to align so that the cluster increases in size
and influence on its neighborhood. In this way, an originally small region will in-
crease by this self-amplification mechanism so that the new order can expand over
macroscopically large regions. The competition between clusters growing at dif-
ferent places in the substance leads eventually to the mentioned magnetic domain
structure.

The magnetization direction of each of the domains is essentially random since
it is the result of a thermal fluctuation. The space, however, is invariant against rota-
tions of the magnets in any direction so that we have a breaking of this spatial sym-
metry. By the described scenario the original symmetry is broken spontaneously.
This is one of the central effects in self-organization.

2.1.2 Convection Patterns

The structures created by the above effect are quite irregular and thus display only
one part of the self-organization phenomena we are interested in. Of more inter-
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est are the regular structures observed in open physical systems driven by external
influences into a steady state far from equilibrium. Well known is for instance the
emergence of convection patterns in fluids under a heat gradient. A famous example
are the Bénard cells, named after the French physicist Henri Bénard who discovered
the phenomenon in 1900, see Fig. 2.2 for a specific example. He studied thin layers
of water on a homogeneous surface heated from below such that the heat gradient is
constant throughout the liquid, see Fig. 2.1.

Fig. 2.1: Convection patterns. Heat transport in a layer of water with small (top) and
large heat gradient (middle). The interaction between the particles depends on the distance
alone (bottom) so that there is no relation to the global structure.

As long as the gradient is not too large, heat transport is realized by conduction,
which is based on energy transfer by collisions between particles of different kinetic
energy. This is a random process, which is stable against perturbations but not very
effective. Instead, heat transport is realized more effectively by convection instead
of conduction. An example is given by the radiator driving a convection pattern in a
room since air is ascending over the heat source and descending after cooling at the
ceiling and the walls. The reason for the emerging convection pattern is the different
distribution of heat sources and sinks in the room.

We could organize the Bénard system to develop a convection pattern, too, by
using an inhomogeneous heat source, but this is not necessary. Instead, once the
gradient exceeds a certain critical value, a phase transition is taking place towards a
surprisingly regular convection pattern, a hexagonal structure in the concrete case.
The emergence of that pattern may be considered as self-organized, since no ex-
ternal help has been given. How can this be? The explanation has two steps. First,
with a large gradient, the system becomes unstable against thermal fluctuations. If
somewhere a higher concentration of hot molecules is emerging, this acts as a kind
of mini-radiator causing a tiny upward convection with a subsequent counter-con-
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Fig. 2.2: Bénard cells. Macroscopic regular structures as a ubiquitous phenomenon of
self-organization: Heated fluid forms regular hexagonal convection patterns. On the right
is a small zoomed in part of the left. To illustrate the flow elongated particles have been
added. c© Herbert Oertel [181].

vection of cooler molecules in the surroundings. Such a mini-convection cell can
induce further convection cells in the vicinity since the downward current will fa-
cilitate other upward currents close-by. In this way, one convection cell acts like a
germ for further cells in the neighborhood so that, by the instability of the system,
a small thermal fluctuation can self-amplify to a macroscopic pattern, which may
spread over the whole system (or parts of it). In this way the original symmetry is
broken spontaneously, without any guidance from outside.

So, the first step in the explanation is given by the ability of the system to am-
plify microscopic thermal fluctuations due to the emerging instability. But how can
we explain the observed regularities. And why are the patterns hexagonal? Well,
the concrete form of the patterns in such phenomena depends on circumstances but
there is a “weak” rule of thumb. Coarsely speaking, one can say that spontaneous
symmetry breaking is in a sense economical, i.e. the symmetry is broken in the
least possible way. In other words, the emerging structures are as simple as pos-
sible. This is explained by the fact that the establishment of the ordered structure
is a complicated process that involves the reorganization of the many constituents
of the system, the re-organizational efforts being the smaller, the simpler the struc-
ture. Hexagonal patterns are preferred if the system (under equilibrium conditions)
is isotropic and homogeneous since they preserve the original invariance against
translation and rotation, in a restricted sense, at least. This principle of “least com-
mitment” is a general phenomenon that gives a qualitative understanding of the
observed patterns.

This is interesting and intriguing. But there is more. An essential point is the
tremendous reduction in dimensionality. The system actually consists of roughly
1023 components whereas the observed pattern is a regular macroscopic structure
that essentially can be described by a few so called order parameters. Moreover,
the patterns reflect a new dynamical organization of the system which is neither
inscribed explicitly into the microscopic dynamics nor into the external conditions.
This is why we may say that the system created this organization ”out of nothing”
by itself.
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2.1.3 Reaction-Diffusion Systems

Further generic examples for self-organization are reaction-diffusion systems. Let
us take this as another example in order to work out the fundamental principles of
self-organizing systems in nature. As we have seen in the Bénard example the emer-
gence of a pattern is the result of two opposing drives, a constraining one, which
tries to conserve the overall symmetry of the system and some self-amplification
mechanism that tries to destroy symmetries by amplifying the effects of local fluc-
tuations. In a reaction-diffusion system the tendency towards symmetry is realized
by diffusion, which is destroying any local density fluctuations. The self-amplifica-
tion in reaction-diffusion systems is caused by an autocatalytic chemical reaction
like

A→ A+A

This generates the desired self-amplification. If, by a fluctuation, the concentration
of A is locally enhanced, the concentration of A is increasing exponentially in this
region. This process is counteracted by the diffusion and the presence of other pro-
cesses, which are responsible for the supply of raw and the disposal of waste mate-
rial. Both are indispensable, since the autocatalytic reaction can not exist by itself
but needs a support system.

2.1.3.1 Turing Patterns

There are many different reaction-diffusion systems leading to different kinds of pat-
terns by a skillful combination of the components of the process. Alan Turing [173]
was probably the first to investigate systems of the above kind in order to understand
morphogenesis as a pattern formation process guided by the interplay of reaction
and diffusion. He was far ahead of his time and it took more than 40 years until the
first reaction proposed by Turing could be realized. Nowadays Turing patterns are
very popular since they can be easily simulated by cellular automata.

Reaction-diffusion processes play also an important role in modern biology. For
instance, they are postulated to cause the pigmentation of animal coats during mor-
phogenesis. An illustration is given in Fig. 2.3, where the fur of a jaguar and two
different results of a reaction-diffusion system are displayed.

2.1.3.2 Self-Organization in Space and Time

Classical Turing patterns are stationary. Even more interesting are reaction-diffu-
sion systems, which realize a self-organization not only in space but also in time.
The most famous example is the Belousov-Zhabotinsky reaction [192]. The compet-
ing processes, diffusion and chemical reactions, need time in order to be executed.
By a skillful combination of the time scales and the nature of the involved reactions,
the interplay between diffusion and reaction can be designed such that the respective
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(a) (b)

Fig. 2.3: Self-organized pattern formation. (a) Coat pattern of a jaguar at about 3
month (top) and in adulthood (bottom). (b) Results of a 2D reaction diffusion system with
changed parameters to induce the transient from the upper to the lower pattern. c© Amer-
ican Physical Society and R. T. Lui et al 2006 [95].

phase shifts lead to an oscillatory behavior of the emerging patterns, see Fig. 2.4(a).
There are several models which lead to oscillatory and more complicated time be-
haviors with many very beautiful patterns. Fig. 2.4(b) displays examples of more
recent studies.

These patterns are more complicated than the stationary ones. Nevertheless they
also represent a tremendous dimensionality reduction demonstrating how very high
dimensional systems can find by themselves coherent and highly coordinated modes
of behavior. This can be seen as a challenge for the creation of artificial systems, the
topic we pursue in this book. We aim to understand and create behavior in highly
complex artificial beings as low-dimensional spatiotemporal modes of a self-orga-
nizing system.

2.1.4 Examples from Biology

One of the most prominent examples of emerging collective behavior is seen in
flocks of birds or schools of fish. Each individual has, via its senses, access only to
signals from its immediate neighborhood. It can for example sense the directions of
heading and distances of the neighboring individuals. With the appropriate align-
ment and integration into the local situation a global pattern forms as for instance
depicted in Fig. 2.5(a).
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(a) (b)

Fig. 2.4: Oscillatory patterns as a generic example of self-organization. (a) Time
evolution of a Belousov-Zhabotinsky reaction in a petri dish [192] c© Zhabotinsky and
Zaikin 1971. (b) Patterns produced by two coupled layers of reaction-diffusion systems
c© American Physical Society and L. Yang et al 2003 [190].

Self-organization is also very well visible in the behavior of insect colonies. A
typical example is how ants find their way to food sources. Experiments showed
that only local interaction is required to make the ant colony choose the nearest
available food source [37]. Each ant leaves a pheromone trace on its way, whether it
searches for food or it returns to the nest. At crossings where several paths intersect
they usually choose the direction that is most strongly marked. Ants from nearby
food sources will return more quickly, such that those paths are more intensively
marked. This in turn increases the probability of more ants following the shorter
paths, see Fig. 2.5(b). This is a positive feedback mechanism providing the self-
amplification that is common to most self-organizing systems.

Also the human brain self-organizes to a large extend. For example the primary
visual cortex develops different cortical maps that arise from local interactions of
the neurons early during development [49]. Similarly, the representation of the body
parts in the somatosensory cortex is also self-organized [23]. During development a
topological map of the body is formed, nearby neurons in the cortex getting sensitive
to stimuli from nearby regions of the body. The relative size of the representation of
the different body parts depends largely on the number of receptors and stimulations
from this region, such that e. g. the representation of the tongue occupies about the
same space as the legs and feet together.

This flexible representation is very powerful and gave rise to the development of
computational models, the most prominent being the self-organizing map [89]. Let
us briefly take a look at its function to see the parallels to the other systems. Each
neuron in the network has initially a random receptive field. For a given stimulus
the best fitting neuron is identified and optimizes its receptive field. Additionally the
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(a) (b)

Fig. 2.5: Self-organization in collective behavior of animals. (a) Flocking of Red-billed
Quelea c© Alastair Rae [181]. (b) Shortest path finding by an ant colony. 1) The first ant
finds a food source (F), using some path, then it comes back to the nest (N), laying a
pheromone trail. 2) The ants follow one of the 4 possible paths, but the reinforcement of
the trail makes the shortest path more appealing. 3) The ants follow the shortest path, the
pheromone trail of the longer ones evaporates c© Johann Dréo [181].

neurons in its local neighborhood shift their receptive fields towards the presented
stimulus. Altogether this acts as a self-amplification mechanism that eventually re-
sults in a self-organized topology preserving map.

The term self-organizing is also used in conjunction with the self-regulation of
the control parameters of a dynamical system to a critical point. The phenomenon,
introduced by Bak, Tang and Wiesenfeld [11], was called self-organized criticality.
It is a general concept to explain the spatial and/or temporal scale-invariant charac-
teristic of many natural systems [112]. For example the size of earthquakes, the size
of homogeneously magnetized regions, the frequency of words in a text, and the size
of neural burst activities in the brain [14, 94] all exhibit a power law statistics. These
scale-invariant phenomenon are mostly observed at phase transitions and require a
precise tuning of the control parameters. A “self-organized critical” system self-
regulates the control parameters to the critical point. The term “self-organization”
is used in a different meaning here, nevertheless, the bridge to our understanding of
self-organization is that these systems self-regulate to a regime where self-organi-
zation is possible.

2.2 Self-Organization in Machines

The interrelation between biology and artificial worlds has been largely investigated
by the Artificial Life community. The idea is to build artificial systems in order to
capture the key aspects of living systems, see [3, 93]. For example, the mentioned
reaction-diffusion systems have been used as operational models of pattern forma-
tion in biological systems (as observed for instance on shells or in nest structures
of insect societies), see above and [27] for many examples. The spontaneous co-
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operation of activities in many component systems has crystallized indeed as a key
concept from these studies thus providing a causal insight in how these phenomena
arise. In robotics the closest relation to these natural systems is found in the field
of swarm robotics, which deals with systems composed of many robots as we will
discuss in the next section. Afterwards we will review self-organization of single
robot behavior. There are of course also a large number of attempts to self-organize
the structure of artificial systems. A popular example is the self-assembly of robotic
structures based on simple but universal building blocks but we do not give any
details here since we are interested in the self-organization of robot behavior.

2.2.1 Swarms and Multi-Robot Systems

When observing the beautiful patterns of a bird flock (see Fig. 2.5(a)), how they
form and dynamically restructure when changing direction or floating around an
obstacle—all without a central unit, then it is not surprising that researchers aim to
understand these systems [144]. It is about the emergence of form and function in
large communities of agents by simple local interactions, which has attracted the
interest of researchers in artificial life and robotics, especially in the field of swarm
robotics. We will only mention a few studies here, for comprehensive reviews on
swarm robotics see [12, 15, 20].

One of the most influential works in this field was by Reynolds [144], who
showed with computer simulations that it is sufficient to use a set of simple local
interaction rules to achieve the dynamic formation of global flocks. The particles
or agents in his simulation align to the orientation of neighboring agents, trying to
keep a certain distance to their neighbors, and avoiding obstacles. An illustrative
sequence of the evolution of a large flock is displayed in Fig. 2.6.

Fig. 2.6: Formation of a set of simulated particles self-organizing into a flock. Each
particle has three behaviors: obstacle avoidance, keeping distance to particles in neigh-
borhood and aligning to average alignment of neighborhood. Time progresses from left to
right. Included with permission by K. Wiley [184].

Again we find the self-amplification mechanism in the alignment, similar to the
magnetic dipoles (Sect. 2.1.1). Different global patterns emerge depending on the
density, the noise and the parameters of interaction. Essentially, the system of hun-
dreds of degrees of freedom organizes into a dynamics of a few dimensions that can
be controlled qualitatively with a few parameters. One of the early demonstrations
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of this phenomenon was given by Deneubourg and colleagues in [38] where the dif-
ferent architectures of a wasp nest are explained by a change in the behavioral rules
of the individuals.

Swarm robotics yields a collective behavior in a group of simple individuals that
interact only locally, like the birds in the flock. The vision is that a set of compa-
rably cheap robots can solve a complicated task. An example are rescue scenarios,
where the fault tolerance and the speed of search are important aspects that cannot
be achieved by a single (and large) robot. The following areas are of special interest
to swarm robotics: collective decision making, path optimization and navigation,
division of labor, self assembly, the role and emergence of communication. For
example a self-organized path formation and homing behavior was demonstrated
in [115, 172] using a set of mobile driving robots that have a camera and a circular
ring of color LEDs at the outer boundary. Equipped with a set of rules describing
how to react on the different colors of the neighboring robots they could organize
into a path structure between the home location and distant location even in cluttered
environments.

Another example are terrain covering robots [168] also inspired from ants. The
robots mark their trail and at the same time sense the markings of other robots. With
a combined obstacle- and trail-avoidance behavior the robots effectively explore
an unknown environment without complicated localization methods or centralized
control. In the two examples the robots used direct and stigmergic signaling for
communication.

One of the major questions in the research on self-organizing collective behav-
ior is about how much complexity is required at the individual level to generate the
observed sophisticated pattern of biological systems [27] or to perform a desired
task [38]. It is interesting that a certain cooperativity can also emerge without ex-
plicit communication, see [185]. That study also showed that decentralized control
is more robust than a centralized control in achieving a collective behavior task,
even though neither of them was explicitly optimized for robustness. It seems that
robustness is an intrinsic property of the distributed organization as it can be vastly
found in self-organizing biological systems as well [27].

2.2.2 Behavioral Self-Organization

The main objective of this book is the self-organization of the behavior of au-
tonomous robots. In the literature, this question is often considered in connection
with reinforcement learning or artificial evolution. Both methods offer the possibil-
ity to drive agents towards certain goals by very unspecific drives. As a consequence,
the agent finds by itself a solution that may be called self-organized because of the
large number of different potential solutions.

Let us consider a few examples from evolutionary robotics: by means of genetic
algorithms a fitness function, encoding some desired goal, can be optimized in a
high-dimensional search space. In this way the control network/program and/or the
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morphology of a robot are optimized to perform a desired behavior. This is achieved
by generating a set of possible solutions (individuals), which are then iteratively re-
combined, mutated and selected until a satisfying solution is found. From generation
to generation a certain structure arises such that specific and sometimes surprising
behavior can emerge from a rather unspecific fitness function [113].

What is the role of self-organization in this scenario? If the fitness function is
very specific, for example to optimize a gait of a quadruped robot for fast locomo-
tion, e. g. [73], then there is only little room for self-organization. The dynamics
is very much restricted by the goal. Nevertheless, the precise implementation of
the behavior can be argued to self-organize. In natural evolution we encounter the
opposite extreme, namely the goal is simply to survive. The emerging forms and
functions can be considered as purely self-organized.

In evolutionary robotic it is unfeasible to work with such unspecific fitness func-
tions, because this produces not enough feedback in a huge search space. Never-
theless there are some examples of largely self-organized behavior in evolutionary
robotics. An illustrative example is the coevolution of two robots, a predator and a
prey [52]. The predator is to catch the prey (high fitness for close distance) and the
prey has to run away (high fitness for large distance to predator). As a byproduct a
set of interesting behaviors emerged such as obstacle avoidance, straight navigation,
visual tracking, object following and of course specific strategies optimized for the
specific opponent, see Fig. 2.7. Also very interesting results have been obtained with
the Polyworld simulation environment of Larry Yaeger [189].

There is also an excellent review [134] making the interplay between self-organi-
zation and embodiment more transparent. The review presents a variety of examples
for the self-organization realized by emergent self-stabilization.

Fig. 2.7: Trajectories of coevolved predator and prey robots (simulation). Black cir-
cle stands for predator and empty circle for prey c© Morgan Kaufmann Publishers and
D. Floreano and S. Nolfi 1997 [52].
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2.3 Exploiting Self-Organization for Robot Control

The aim of the present section is to extract the characteristic features of self-orga-
nizing systems so that these system can serve as a kind of prototype for the design
of artificial systems. Let us therefore summarize the essential points and discuss the
usefulness for robotic self-organization.

2.3.1 Mechanisms of Self-Organization

Although largely different in detail, there is a common principle driving self-organi-
zation. The respective systems are characterized by (i) observing global symmetries
(like the homogeneity and isotropy of a fluid) or constraints and (ii) the presence of
feedback mechanisms able of amplifying local, symmetry breaking fluctuations up
to macroscopic scales. The emerging patterns are the result of a spontaneous sym-
metry breaking arising as the minimal compromise of violating versus conserving
the global symmetries and/or constraints of the system.

Generic is the dependence on some few control parameters which regulate the
transition from the “normal” to the self-organizing regimes. The control parameter
for the emergence of Bénard cells is the temperature gradient, which measures so
to say the stress exerted on the system from outside to organize heat transport as ef-
ficiently as possible. When increasing the gradient, transitions from the conduction
regime to more and more complex convection patterns are known to occur. In the
reaction-diffusion system the diffusion constant and the local reaction rates deter-
mine the kind of patterns observed. In the case of the ants the amount of pheromone
an ant elicits can be considered as a control parameter. Since the pheromones evap-
orate in the course of time, a subcritical marking of the tracks does not lead to suf-
ficient self-amplification such that no common path to the nearest food place would
emerge.

The next point is the tremendous reduction in dimensionality. The systems are
composed of many small elements interacting locally in a high dimensional space,
but the emerging global patterns can be described by just a few order parame-
ters. While the control parameters are given from outside, the order parameters are
emerging with the patterns and are sufficient to describe the phenomenon entirely at
the macroscopic level. Most importantly, the global structure is not at all inscribed
into the local interactions as is most clearly demonstrated for instance in the case of
the Bénard cells, see Fig. 2.1.

2.3.2 Self-Organization of Robot Behavior

The self-organization processes realized in machines so far are restricted to specific
conditions and goals. How can the knowledge about self-organization in nature help
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in formulating a general and systematic approach? What is the relation between a
convection pattern (like the Bénard cells) and the behavior of a robot. From a funda-
mental point of view, the robot is nothing else but a number of components, linked
together by some joints that can be actuated by motor forces. Moreover, there is the
interaction with the environment both by physical actions and sensorial responses.
By sending electrical energy to the motors nearly everything is possible that can be
done by this complex physical system.

If the robot follows closed loop control, the motor forces are a function of sensor
responses so that we have a feedback system. The main ingredient of self-organi-
zation, the self-amplification of local fluctuations, seems to be reachable if only the
feedback parameters are appropriately chosen. Such a system will also obey lots of
symmetries and natural constraints, which may provide the confinement necessary
to keep the self-amplification in bounds. Can we than expect that the system will
develop spatiotemporal patterns – behaviors—as a compromise between these two
opposing tendencies? And can we expect the same richness and beauty observed in
the natural self-organization systems?

The answer in the first place is no. It will be possible only in exceptional cases
to tune the parameters of the controller by hand so that the system has an appropri-
ate feedback structure. This is in contrast to natural systems, where the interaction
parameters are set, so that the system has the ability to self-organize (or not) and, if
so, all one has to do is to choose the control parameters. Due to the dimensionality
reduction phenomenon, the latter is a task of low complexity.

However, there is hope if we find adequate principles of self-regulation for the
parameters of the system. This book presents homeokinesis as a general self-reg-
ulatory paradigm driving complex physical feedback systems towards a working
regime where self-organization can happen. We will demonstrate both theoretically
and by many robotic experiments that the new approach rests on the same principles:
self-amplification of perturbations in balance with symmetry conserving and other
confining effects that constrain the system from running into chaos. In this sense,
homeokinesis is a valid realization of the general principles of self-organization in
embodied robotic systems.

The concrete realization was guided by a set of premises that may serve as a
kind of “acid test” that any principle claiming to engender self-organization should
pass. These premises can be formulated in the following way. Any principle driving
agents to self-organized behavior (i) should be domain invariant, i. e. be independent
on any specificities of the physical system under control; it is (ii) to be operational
in continuous state-action spaces; (iii) it must be simple in order to be as universal
as possible; and eventually (iv) it should exclude any random generation of actions
as they are used for instance in reinforcement learning. Instead, search has to be an
emerging phenomenon that takes place also in the deterministic case. In other words:
search is an element of behavior, any randomness (noise) must be of physical origin.
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The Sensorimotor Loop

Abstract: This chapter aims at providing a basic understanding of the sensorimotor loop as
a feedback system. First we will give some insights into the richness of behavior resulting
from simple closed loop control structures in a robotic system called the BARREL. This
richness is a lesson we can learn from dynamical systems theory: even very simple systems
can produce highly complicated behavior. Nearly everything is possible in such a feedback
system that is provided with enough energy from outside. Surprisingly, this is accomplished
even with extremely simple, fixed controllers, to which we will restrict ourselves here. In
later chapters we will see how the homeokinetic principle makes theses systems adaptive
and drives them towards specific working regimes of moderate complexity, loosely speaking
somewhere between order and chaos.

The aim of this chapter is to make the reader familiar with the general structure
and specific properties of tightly coupled sensorimotor loops. In these loops the mo-
tor commands are directly related to the sensor readings, so that the robot with its
“brain” forms a feedback system. In this context the framework of dynamical sys-
tems, known from mathematics and physics, started to get increasing attention in
the last two decades [13, 81, 120, 152]. It is a powerful method to analyze [75] and
construct [39, 72, 78, 81, 152, 160] robot controllers, as it allows one to formulate
the time evolution of the system, in a quantitative manner and to obtain both analyt-
ical and qualitative predictions. Dynamical system theory also led to the application
of chaos control and coupled chaotic oscillators to robotics [91, 138, 159].

After a general introduction of closed loop control, using the framework of dy-
namical systems, we study a specific example, the BARREL, that is particularly in-
teresting by its strong embodiment effects. The general settings are investigated sub-
sequently in an elementary sensorimotor loop, a one-dimensional system controlled
by a single neuron. Without noise, a pitchfork bifurcation occurs and a pronounced
hysteresis behavior is established if the neuron has a bias. We introduce our concept
of an effective bifurcation point to allow for noise effects. This concept defines a
specific working regime, where robots can already take decisions while still being
sensitive to perturbations by the environment. Eventually, we present briefly neural
networks as universal tools for the realization of the control system. The investi-
gations are based on dynamical systems theory but the mathematics will be kept

23
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simple and essentially self-contained so that no special knowledge of the latter is
necessary.

The theoretical studies are underpinned by robotic experiments that can be ex-
ecuted with our simulation environment. Experiments are provided for studying
closed loop control and in particular the concept of the effective bifurcation point un-
der various conditions. The role of the embodiment can be investigated with wheeled
robots. When interconnected to form a chain of robots emergent cooperativity is ob-
served even though decentralized control is used. In this way, the present chapter
makes first contact to the central idea of externalizing complexity, namely to con-
trol complex physical modes with very simple control structures and thus to source
the complexity out to the interaction with the environment.

3.1 Sensorimotor Loop — The General Case

In a self-consistent approach to self-organizing robot behavior, the sensor values are
the only source of information for the robot. This is also the credo of our approach.
The communication between the “brain” and the body of the robot takes place at
the discrete instants of time t = 0,1,2, .... In practice, typical clock frequencies are
ranging from 10 to 100 Hz, depending on the speed of the information processing.
In each time step a vector of sensor values xt ∈ Rn is reported. Let us illustrate this
by two examples. Firstly we consider a wheeled robot with sensor vector

x = (vl ,vr,s1, ...,sk)
> (3.1)

where vl and vr are the wheel velocities of the left and right wheel, respectively, as
measured by the wheel counters, and si are the values of the infrared sensor i with
0 ≤ si ≤ 1. The wheel velocities are examples for proprioceptive sensors. Infrared
sensors are examples of exteroceptive sensors since they get information about the
relation to the outside world. In many of the applications treated further below the
robot has only proprioceptive sensors providing informative feedback on the state
of its body, an example being our dog robot, see Fig. 3.1, where

x = (x1, . . . ,xn)
> , (3.2)

xi are the joint angles.

3.1.1 The Controller

At each time step t, the controller sends a vector yt ∈ Rm of target values to the
motors of the robot. Closed loop control means that the controller is given by a
function K : Rn→Rm mapping sensor values x ∈Rn to motor values y ∈Rm. In the
most simple case this is a function
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Fig. 3.1: Example of a sensorimotor loop with the joint angles as proprioceptive sen-
sors. Only a single joint is depicted.

y = K (x) (3.3)

depending in general on a vector of parameters p that can be adapted in order to
realize a desired behavior. More generally, the map may depend on an internal state
st ∈ Rk, which is updated in each time step as well so that the controller is realized
as

yt = K (xt ,st) (3.4)
st = O(xt ,st−1) (3.5)

where now K : Rn×Rk → Rm. Controllers with internal states are realized conve-
niently by recurrent neural networks as introduced later in Sect. 3.6.4. However, the
main problem in using an internal state is to find the update rule (3.5) for the latter
such that the system develops the desired behaviors.

We will use a very simple realization of the parameterized controller function
K (x), see Eq. (3.3), but complement it later with a dynamics for the parameters p,
which will be a function of the state dynamics. We are free to consider the param-
eters p as internal state variables so that the new feature introduced by the homeo-
kinetic principle is an explicit rule for the function O : Rn×Rk→ Rk in Eq. (3.5).

3.1.2 Forward Model and Sensorimotor Dynamics

Let us stipulate that our robot has a certain ability for cognition. We understand here
cognition in a minimalist sense as the ability of the robot to predict the consequences
of its actions in the near future with a forward model. Formally, this is realized by
a function M : Rn×Rm→ Rn mapping the sensor values x and the actions y of the
robot onto the new sensor values, i.e.

xt+1 = M (xt ,yt)+ξt+1 (3.6)
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where ξt is the difference between the predicted and the true sensor values. This
quantity will also be called noise because it contains the unpredictable effects like
sensor noise and so on.

With these notions we may write the dynamics of the sensorimotor loop in the
closed form

xt+1 = ψ (xt)+ξt+1 (3.7)

where
ψ (x) = M (x,K(x)) . (3.8)

The function ψ : Rn→Rn is called the dynamics model and can be understood as a
time series predictor for the time series of the sensor values xt , see also Fig. 3.2.

Fig. 3.2: The sensorimotor loop (top) and its model (bottom).

The prediction error, also called the model error, can be defined as (dropping the
time indices)

Epred = ξ>ξ . (3.9)

Let the model M be realized by a parameterized function with parameters a ∈ RM .
In order to minimize the prediction error (3.9) the parameters can be adapted by
following the gradient of the error function in descending direction, see Fig. 3.3 for
the signal flow. Let a be any of those parameters, then the learning step is defined as

∆a =−εA
∂Epred

∂a
, (3.10)

with a learning rate εA that is kept so large that fast parameter changes are possible
in the following applications. The model and the learning dynamics can be realized
for instance by a neural network as introduced in Sect. 3.6.

The structure of the model and the learning procedure define the passive cognitive
abilities of the robot as will be worked out in more detail in the following.

We use the word model in two different contexts. There is the forward model
M that predicts the outcome of the actions. For simplicity it is sometimes called
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Fig. 3.3: The sensorimotor loop and the forward model of the robot. The controller
receives the current sensor values and generates corresponding motor values, which are
sent both to the robot and its forward model. The difference between the predicted new
sensor values and the measured ones forms the prediction error Epred. A learning signal
for the improvement of the model is derived by gradient descending the error Epred.

just the model. In its most simple realization it only receives the motor values (ac-
tions), in which case it can be considered as a self-model, especially if the sensors
are essentially only the proprioceptive ones. The second context is the model of the
entire sensorimotor dynamics ψ(x), which we call the dynamics model. Quite gen-
erally, we will call the robot together with its controller and the forward model the
brain-body system.

In order to illustrate the formalism of the sensorimotor loop and the merits of
closed loop control we consider now an example using a robot with strong em-
bodiment effects, i. e. a robot where the physical effects like inertia and centrifugal
forces are heavily interfering with the effects of the actions taken. Afterwards we
will return to a simpler case for analytical considerations.

3.2 Dominated by Embodiment: The BARREL

While our emphasis lies on controlling more complex robots we will in the current
chapter restrict ourselves to a case of moderate complexity so that analytical consid-
erations are still possible. The machine we are going to use is the BARREL (which
is short for barrel robot), see Fig. 3.4.

Fig. 3.4: The BARREL. It consists of a cylin-
drical encasement with two weights sliding on
two orthogonal axes perpendicular to the cylin-
der axis. Each of the weights is moved by a lin-
ear motor so that the system can shift its center
of gravity. The sensor values measure only the
inclination of the axes, i. e. xi = sin(θi). Thus,
the true physical state of the system is largely un-
known to the controller. Note that x1 < 0 in the
displayed situation.

θ1

θ2 x2

x1

Axes
(Sliders)

Heavy Masses
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The robot has a cylindrically shaped body. Inside there are two weights that are
moved along the two axes by simulated linear motors. Each bare motor is supported
in doing its task by an extra PID controller, see Sect. 16.4.4 (p. 301) for details,
that compensates for both overshooting and undershooting in the movement of the
weights. Nevertheless, due to a limited maximal force the motors cannot move the
weights with arbitrary velocity and precision. The movements of the weights induce
a change of the center of gravity that causes the robot to roll in one direction or the
other.

The BARREL can unfold many different kinds of motion, despite its simple con-
struction, as will be seen below.

3.2.1 Properties

The reason why we have chosen the BARREL is because it is a body-dominated
system. What we mean by this is that, similar to many systems used in robotics,
the consequences of an action are largely dominated by the current physical state
of the robot. By way of example the effect of shifting a weight on its axis will be
very different if the system is at rest or in a rapidly rolling motion so that the sensor
reaction on any action is highly ambiguous. The situation is even more complicated
due to the physical properties of the robot which are simulated realistically by the
ODE physics engine [154] embedded in our simulation software, see Chap. 16. The
execution of an action (moving the weights) is largely influenced by the inertia of
the weights, the Coriolis forces due to the motion of the weights on a rotating axis,
centrifugal forces if the BARREL is rolling with high velocity, and others.

In the following we are going to discuss different control paradigms using the ex-
ample of the BARREL. This allows us on the one hand to demonstrate some features
of the embodied artificial intelligence approach in a simple and transparent manner
and on the other hand to outline the perspectives of self-organization for extending
this approach to a wider field of applications.

3.2.2 Open Loop Control

One way to control the BARREL is in the open loop setup where a sequence of motor
signals is sent to the robot. This sequence may be for instance generated by a central
pattern generator. Let us first assume that the BARREL is to roll with a fixed velocity.
This may be achieved by shifting the internal weights periodically with a convenient
frequency and a phase shift of π/2. The velocity of the BARREL is then determined
by that frequency – one rotation of the BARREL corresponds to one period of the
pendular oscillations.
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Video 3.1: Open loop control of the BARREL The robot is controlled by a periodic
control signal driving the internal weights with a phase shift of π/2. Starting with a very
low frequency of the controller signal, the frequency is doubled at time 2:15, 2:40, 3:05,
and 3:30. At 3:45 the BARREL is accelerated by a force (red dot) but is seen to return
rapidly to the original mode of behavior. The higher frequencies very clearly reveal the
difficulties in realizing a fast motion under the open loop control paradigm. The video
can be watched at http://playfulmachines.com.

When doing so we find that, at low frequencies and with some friction at least, the
BARREL adapts its (average) rotational frequency to the frequency of the pendular
oscillations indeed, see Video 3.1.

This behavior is stable against moderate perturbations. To understand this, imag-
ine a stroboscopic mapping depicting the BARREL every moment the red weight,
say, has maximal downward elongation. In an ideal and constant rolling mode (with-
out friction) the red weight will be exactly below the cylinder axis since then there
is no torque (the green weight is in the center due to the π/2 phase shift). If the
BARREL is externally decelerated, the stroboscopic mapping will show the weight
to rotate slowly against the rotational direction of the BARREL (since the maximal
elongation is reached before the tip of the axis reaches ground). Hence a torque is
exerted counteracting the slowing down. This stabilization mechanism works just
as well if the BARREL is being accelerated from outside, as long as within certain
bounds.

Let us try to make contact with the embodied AI paradigm [131] at this point.
Its aim is to shift the computational load from the controller to the morphology and
physical properties of the embodiment. In the above case this is realized due to the
self-stabilization effect—a simple periodic signal generates a stable motion pattern
in a complex physical object. If the aim was to realize nice harmonic motion one
had two options, either to change the wave form of the control signal (to increase
the control effort) or to modify the physical properties of the body.

The embodied AI approach takes the latter route. As the experiments show, for a
BARREL with fixed physical properties, there are one or more preferred frequencies
where the motion is most harmonic. This is also where minimal control efforts1 are
required. On the other hand, in the sense of the embodied AI, given the frequency,
one may change the physical parameters like the PID settings, the forces and pen-

1 Control efforts are understood in terms of the complexity of the required controller that can
generate the behavior.

http://playfulmachines.com/videos.html#vid:outline:barreldifffrequencies
http://playfulmachines.com/videos.html#vid:outline:barreldifffrequencies
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dular ranges, the mass of the cylinder and so forth in order to get the desired nice
harmonic motion.

However, this only works as long as the frequency is not too high. At higher
frequencies, the self-stabilization effect is lost and different modes of behavior are
induced by the periodic signal. It is here that the physical effects, like the Coriolis
force, start to dominate so that the BARREL is driven into irregular behaviors, see
Video 3.1. Following the embodied AI paradigm, one would try to modify the phys-
ical properties appropriately to make the system obey the simple periodic control
signal but there is no simple and/or straightforward solution to that problem.

The experiment can also be performed by the reader as described in Experi-
ment 3.1.

Experiment 3.1: Open loop control of BARREL

Many of the experiments described in this book can be performed by the reader using our simulation software that
is online at [103]. Here we will describe the handling of the software in more detail. Choose one of the options
described at the website to get the software on your computer. You will get a folder with an index.html, which
when opened in a browser shows all experiment descriptions and provides links to start them. For each simulation a
terminal window and a graphical window opens. The latter shows the rendered scene, see Video 3.1. At the same time
the terminal window shows a welcome text and the parameters that are used. While working with the simulator both
windows are important. The terminal window allows to check and change parameters via a text-based console, which
can be entered by pressing <Ctrl>+C in the terminal window. A prompt appears (>) and you can type
>help<Enter>
to obtain a list of possible commands, see Fig. 3.5(b). The graphical window allows to observe and possibly interact
with the robots. For a list of keystrokes and mouse actions type h (make sure the focus is on this window).
Our first experiment is Open loop control of BARREL. The simulation is now running with the default parameters:
period=300 given in control steps (1/50 s) and phaseshift=1 given in multiples of π .
Changing parameters of the robot or controller is done by using the pattern “Parameter=Value” on the command
prompt. For instance, in order to decrease the period duration (increase frequency) of the sine signal type (after press-
ing <Ctrl>+C in the terminal window)
>period=200<Enter>
If done correctly, the actually set value is echoed, i. e. period = 200.0000,
otherwise the parameter name was probably misspelled. Hint: you can use the <Tab> key to do automatic completion.
In the default situation there is no rolling friction. The barrel does not move with a constant speed but oscillates in-
stead. Switch on the friction by
>friction=0.1
Now, decrease the period further, try: >period=100,50,10. Note, that the robot cannot follow the periodic com-
mands if too fast. You can also change to another control mode for instance by using a colored noise with the param-
eters
>strength=Strength
>color=Correlation time of the noise in 1/50 s
Try >strength=1, >color=100 and disable the sine generator with
>amplitude=0
Most of the parameters of the simulation can be monitored by starting the GUILOGGER by pressing <Ctrl>+G in the
graphical window. Then a new window appears where you may tick the boxes for the on-line display of sensor and/or
motor values, see Fig. 3.5(a). Alternatively you can invoke the MATRIXVIZ with <Ctrl>+M, which is especially handy
in highdimensional systems, see Fig. 3.5(c).

3.2.3 Closed Loop Control

Outside the self-stabilization region of a rolling mode, the BARREL does not obey
the periodic motor signals any longer and realizes more or less chaotic behaviors.
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(a) (b)
Welcome to LpzRobots
-------------------------------------------------------
...
[Simulation Environment]
simstepsize= 0.010000 stepsize of the ...
gravity= -9.810000 strength of gravity
realtimefactor= 1.000000 speed of simulation

...
[SineController]
period= 50 period of oscillation
phaseshift= 1 phaseshift of channels

...
######
Type: ? for help or press TAB
>
? help list load ls quit set show store view
> ls
Agents ---------------(for store and load)
ID: Name
1: Barrel (Controller and Robot)
101: |- only Controller
102: |- only Robot

Objects --------------(for set and show)
ID: Name
1: Simulation Environment
2: SineController
3: Barrel

> period=10
period = 10.0000

> store 102 barrel.ctrl
Robot stored

(c)

Fig. 3.5: User interface of the LPZROBOTS simulator. (a) GUILOGGER window with
two controlled plotting windows. In the main window (right) a set of channels are se-
lected. Their temporal evolution is shown in the subwindows (left), here sensor and motor
values, and the parameters of the controller. (b) Terminal window with console interface.
(c) MATRIXVIZ showing the state of the matrix R and the time evolution of x.

In some sense the body takes over the command and if the controller is to achieve
a certain objective, it has to “watch” carefully what the body is doing and develop
the right “tact” for it. However, this can not be done in the open loop control mode
we used in the previous section, because the sensors have to be taken into account.
In the special case of the BARREL, we have two sensors measuring the inclination
of the axes, see Fig. 3.4.

As before, we assume that the sensor values at time t are comprised in the vector
xt ∈Rn. In the case of the BARREL we have n = 2 and we may normalize the sensor
values so that −1 ≤ xti ≤ 1 for i = 1,2. If the robot is rolling with a fixed velocity,
the vector of sensor values xt is rotated in each time step by a fixed angle α so that
we have the very simple sensor dynamics

xt+1 =U (α)xt , (3.11)

where U is the rotation matrix

U (α) =

(
cosα −sinα
sinα cosα

)
rotating a vector by the angle α .
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Under the closed loop control paradigm, the controller is a function K : Rn→Rm

mapping the vector xt of sensor values to the vector yt of motor values, see Eq. (3.3).
These controllers can be rather complex, in particular they may contain internal
states that modify the mapping depending on contexts, see Eqs. (3.4, 3.5). In the
BARREL case yt ∈ R2 gives the nominal positions of the internal weights on their
respective axes. We will use for the moment a very simple controller that will prove
sufficient to produce a rolling motion with fixed velocity. The idea is that in the
stable rolling mode, the vector of actions yt is to be in a fixed phase relation to the
vector of the sensor values xt .

Let us therefore tentatively put the controller as

K (x) =Cx (3.12)

where
C = cU (φ) (3.13)

with c defining the amplitude of the weight shifting. When using this controller
we find stable rolling modes as expected. We may push the BARREL or reverse its
velocity from outside but after a very short time the robot returns to its stable rolling
mode with fixed velocity, to reproduce follow Experiment 3.2.

If C is a rotation matrix one observes stable rolling modes with a frequency de-
fined by φ , see Eq. (3.13). However, it is observed that φ is in general larger than
the true rotation angle of the sensor vector in one time step α (3.11). Instead one
may choose φ rather large without increasing the velocity considerably. The phase
difference is due to the specific physical properties of the robot described above and
could be evaluated empirically or calculated by knowing the physics of the system
in detail. However, this is not in the spirit of this book, which is devoted to the self-
organization of specific modes in a physical system without knowing it in advance.

The linear controller, see Eq. (3.12), is appropriate in the BARREL case since the
sensor values are not in a direct proportionality to the motor values. In general, we
have to make sure the actions (motor values) are kept in bounds by introducing a
smooth squashing function g(u), that is applied componentwise putting

K (x) = g(Cx+h) (3.14)

where h ∈ Rm is a bias introduced for greater generality. In this way, motor values
are kept safely in a defined interval.

The nonlinearity in Eq. (3.14) does not qualitatively change the behavior if C is
chosen as in Eq. (3.13). However, we are now free to chose the matrix elements of
C arbitrarily. As the experiments show, depending on the parameters, one observes
a variety of behavioral modes, which are sometimes surprising given the extremely
simple nature of the controller. An example is the “lolloping” mode, see Video 3.2.
The variety of modes is even larger if the bias values h are also chosen arbitrarily,
see Experiment 3.2.

By varying the parameters in a systematic way, we obviously can find out about
the scope of modes that are realizable by this type of controllers. In the BARREL



P
e
rs

o
n
a
l 
C
o
p
y3.3 Analyzing the Loop 33

Experiment 3.2: Closed loop control of BARREL

Start the simulation Closed loop control of BARREL. The simulation is now running with the C matrix as C11 =C22 =
1, C12 =−C21 = .1 and h0 = h1 = 0. Change the parameters coupling1 for the diagonal and coupling2 for the
non-diagonal matrix elements of C, e. g.
>coupling1=-0.2
Use the GUILOGGER (<Ctrl>+G) for watching the sensor values, which are a good indicative for the behavior of the
BARREL. In order to select random control parameters in the interval (−5,5) press r on the graphical window. The
new parameters are printed on the terminal and you can use the GUILOGGER for monitoring all parameters (x,y, C, h).
To randomize also the bias terms h in the interval (−3,3) press R (<Shift>+R), which results in even more different
behaviors. With L (Shift+L) you can set to C11 = C12 = 2, C21 = C22 = −1, which will cause the robot to roll and
jump such that we call it the lolloping mode.

Video 3.2: BARREL performing a “lolloping” behavior. A fixed closed loop controller
(C11 =C12 = 2, C21 =C22 =−1, h1,2 = 0) was used. The robot jumps by rapidly moving
the internal weight while rolling from left ro right. The video can be watched at http:
//playfulmachines.com.

case the space of parameters is 6 dimensional so that the search space is already
quite large. However, in the systems to be considered later, the parameter space is
of several hundred dimensions so that an unbiased search is impossible. The new
perspective self-organization can bring into this paradigm is to find out, by self-
exploration, about the whole range of low-complexity modes the system is able
to support by low-complexity controllers. These modes may then be viewed as the
candidates for embodied AI realizations of more complex behavior architectures.

Before going to the more theoretical considerations let us remark a remote sim-
ilarity of the BARREL to the famous passive walker [111] when driven by some
periodic motor forces enabling it to walk on a horizontal plane [32]. This walker
works by having its center of gravity a little ahead of the point of support, falling
over being avoided by the leg swinging forward to support the body in the right
moment. The BARREL has an easier life since it is always protected from falling
over by the cylinder encasement. Nevertheless, in both cases there is a self-stabiliz-
ing and self-promoting effect due to the specific embodiment so that the amount of
control can be kept small.

3.3 Analyzing the Loop

In order to treat essential features of the closed loop control analytically, we con-
sider now an even simpler example, namely a one-dimensional sensorimotor loop.
One special application will be the velocity control of wheeled robots. Actually, this

http://playfulmachines.com/videos.html#vid:outline:lolloping
http://playfulmachines.com/videos.html#vid:outline:lolloping
http://playfulmachines.com/videos.html#vid:outline:lolloping
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seems a little strange, given that the realization of an externally determined wheel
velocity is a standard task of classical robotics with many reliable solutions. How-
ever, our goal is different. We want to use the wheel velocity control as a transparent
example for the more involved cases to be considered later and moreover we aim to
underline the merits and the potential of closed loop control for embodied systems.
Furthermore, we want to show how minimalist decentralized control can give rise to
self-organization effects as a mere consequence of the specific physical properties
of the embodied system. This will be exemplified by a chain of such robots with
each wheel being controlled independently so that control is strictly decentralized.
We will see that under certain conditions the robots spontaneously cooperate. This
takes place even when moving in a maze with only narrow passages between ob-
stacles. Thereby, the investigation of this special system gives us the opportunity to
come into contact with basic notions and effects relevant for the self-organization
of robot behavior. Moreover we will also argue that this kind of control opens new
perspectives for robotic tasks in quite practical settings.

Let us consider a wheel of a robot rotating with velocity v t . It is monitored by a
wheel counter, which outputs a measured velocity xt so that

xt = Av t +κt

where κt is the measurement (sensor) noise and A is a hardware constant assumed to
be known for the moment. The controller of the robot outputs the target velocity yt
for the current time step. Assuming that the motor is able to realize in one time step
the target wheel velocity we would have v t+1 = yt and xt+1 = Ayt +κt . However,
there are always perturbations so that we put

xt+1 = Ayt +ξt+1 . (3.15)

We will use this equation also for the case that the robot is moving on the ground or
embedded into the chain. In this case the “noise” term ξ has to account for all effects
due to the coupling with other robots, the slip and friction on the ground, inertia
effects, collisions, and the like. Fig. 3.6 gives an exemplification of this situation in
an experiment with a realistically simulated robot.

In a closed loop approach without internal states, the controller is given in terms
of the sensor value xt as

yt = K(xt) . (3.16)

In the simple case we use
K(x) = tanh(Cx) (3.17)

where the hyperbolic tangent (tanh) confines the motor values between −1 and 1,
see Fig. 3.7, so that the wheel can rotate forward and backward. We may inter-
pret this as a simple rate-coded neuron with tanh activation function and synaptic
strength C, the neural network realization, see Sect. 3.6, of the controller consisting
just of this one neuron.

Using Eq. (3.16) in Eq. (3.15) leads to the following dynamics of the sensorimo-
tor loop
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Fig. 3.6: Model error of a wheeled robot. A typical trajectory of the robot with the model
errors ξ 2, see Eq. (3.18). While during the normal drive the error is essentially given by the
measuring uncertainties, the error increases drastically at the repeated collisions with the
wall since wheels get blocked or may also rotate freely if the robot gets jammed. Control
is realized by a homeokinetic controller as introduced later. Graphics taken from [68].
c© MDPI Publishing and Frank Hesse.

xt+1 = A tanh(Cxt)+ξt+1 (3.18)

so that the map ψ of Eq. (3.8) is

ψ (x) = A tanh(Cx) .

It will prove convenient to use also the formulation of the dynamics in terms of the
membrane potential zt =Cxt of the neuron where R =CA

zt+1 = R tanh(zt)+ρt+1 (3.19)

and
ρ =Cξ (3.20)

is a modified noise variable.

3.3.1 Feedback Strength

The sensorimotor loop is a feedback loop, the (linear) feedback strength being given
by
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Fig. 3.7: Hyperbolic tangent squashing function. The range of tanh(z) is (−1,1). Used
as an activation function the neuron has a linear response around z = 0 with slope 1. For
large absolute z the neuron is in its saturation region with little input dependence.

R =CA .

The effect of R can be seen by the following argument. We consider the case of small
z where the approximation tanh(z)≈ z− z3

3 can be used. Using the linear term only,
one gets (ignoring the noise for the moment) from either Eq. (3.18) or Eq. (3.19)

xt = Rtx0 (3.21)

meaning that the wheel slows down for 0 < R < 1 (xt → 0 as t→∞) and accelerates
for R > 1 ( xt increases exponentially), but the velocity can not increase unrestrict-
edly since | tanh(z)|< 1, i. e. the nonlinearities confine the further growth of xt .

3.3.2 Fixed Points

The asymptotic value of x in the nonlinear case is given by the solution of the fixed
point equation obtained from Eq. (3.19) as

z = R tanh(z) , (3.22)

which has always z∗ = 0 as a fixed point, which is stable for 0 < R < 1 and unstable
for R > 1. For R < 0 the state changes signed every iteration and is thus not useful
for our purposes. At R = 1 there is a pitchfork bifurcation with two stable fixed
points emerging. The stable fixed points can be found for instance by graphically
solving the transcendental equation as shown in Fig. 3.8(a).

Another way is to use the approximation tanh(z) ≈ z− z3

3 in order to get results
for the case that |z| is not too large. This is supported by the well known fact from
dynamical systems theory that a system given by Eq. (3.19) is topologically equiv-
alent [165] to the more simple system
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(a)
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Fig. 3.8: Pitchfork bifurcation. (a) The graphical solution of z = R tanh(z) is exemplified
for R = 0.5 with the stable fixed point at z = 0 and for R = 1.2 with two stable fixed
points at z = ±0.79, the fixed point at z = 0 being unstable; (b) The bifurcation diagram
is showing the fixed points in dependence on R. The solid line indicates the stable fixed
points of the exact system and the dashed line of the approximation Eq. (3.23). The dash-
dotted line marks the unstable fixed points.

zt+1 = R
(

zt −
z3

t

3

)
+ρt+1.

In this way we may get a qualitative analysis of the system in simpler terms. This
point will be discussed again in the gradient descent formulation of the dynamics,
see Sect. 3.3.3.

Using this simplification, we obtain for R = 1+δ with 0 < δ � 1 the two stable
fixed points as (setting ρ = 0)

z =±
√

3(R−1)+O(δ 2) . (3.23)

The approximation is valid only for 0 < δ � 1. The expansion in next order of the
noise strength is given in Sect. 3.A.2.2 (p. 57), see Eq. (3.50). Further analysis of
such a system (self-coupled single neuron) without noise is given in [121]. In [122]
it was shown that such a neuron can even exhibit chaotic dynamics, however, not
for the parameters used here.

3.3.3 Dynamics as Gradient Descent

The above derived properties of the sensorimotor loop can be seen more simply if
rewriting the system dynamics as a gradient descent. This is possible for any one-
dimensional system. In the present case we use

∂
∂ z

lncoshz = tanhz
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to introduce a potential

V (z) =−R lncoshz+
z2

2
(3.24)

so that Eq. (3.19) can be rewritten as

∆zt =−
∂

∂ zt
V (zt)+ρt+1 . (3.25)

As usual the gradient dynamics of Eq. (3.25) may be visualized by that of a sphere
sliding down on the walls of a vessel filled with a viscous fluid.

The potential picture allows the discussion of the properties in simpler terms. For
instance, the potential

V (z) = γz+αz2 +β z4 (3.26)

with α = 1
2 (1−R), β = 1

12 R, and γ = 0, corresponds to the third order approxi-
mation of the tanh function. It is easily seen that the potential differs from the full
potential by a smooth deformation (without introducing new extremes) so that the
qualitative properties of the gradient dynamics are preserved. In this way the notion
of topological equivalence of dynamical systems gets a clear graphical demonstra-
tion, see Fig. 3.9. The above potential is well known from many branches of physics
and dynamical systems theory.

-1.0 -0.5 0.5 1.0

z

-0.02

0.02

0.04

0.06

Fig. 3.9: Double well potential with
approximation. Comparison of the
exact potential, see Eq. (3.24) (solid
curve), with its z4 approximation
Eq. (3.26), both for R = 1.2.

3.3.4 The Effective Bifurcation Point

If the noise is not zero it will not only modify the gradient step in size but may
even change its sign. As a result, the system does not converge to the fixed point but
instead fluctuates around the latter, provided the noise is weak and/or the fixed point
has a high stability. In the bistable situation the noise may even drive the state over
the potential barrier by a longer sequence of sign inverted gradient steps. Intuitively,
the probability of such a transition will decrease exponentially with the length of an
appropriate sequence which, at its hand, must be the longer the higher the potential
wall and the weaker the noise.

Interestingly, the average time between such transitions is given [55] as a function
of the strength D of the noise ρ Eq. (3.25) as

Tcross ∝ e
∆V
D (3.27)
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where ∆V is the height of the potential barrier. The probability of crossing is close
to one if D� ∆V , i. e. if the potential barrier is low as compared to the fluctuations
produced by the noise. On the other hand, if ∆V � D, there is no barrier crossing
at all in any physical time. There is a certain region where the system still feels
the bistability but the barrier crossing is nevertheless substantial. In this region, the
system, so to say, is already taking decisions (choosing one of the two fixed points)
but is still very sensitively reacting to perturbations (e. g. by the environment) by
revising decisions.

Right in that region we may define a point, called the effective bifurcation point2,
where the number of barrier crossings becomes critical in a relevant physical time.
In the robotics application this will be the time scale of the behavior so that barrier
crossing events will directly influence the behavior of the robot.

The concrete position of that point is empirical and can be defined by speci-
fying the crossing time. In view of the exponential behavior of the crossing time,
see Eq. (3.27), we better define the position of the effective bifurcation point by
specifying the quantity (which is the logarithm of the crossing time)

χ =
∆V
D

. (3.28)

Details may be found in Sect. 3.A.2. The idea is illustrated in Fig. 3.10, which
demonstrates that the effective bifurcation point is rather sharply defined even if the
noise is rather strong. This is a direct consequence of the exponential dependence
on the noise strength, see Eq. (3.27). Moreover, Fig. 3.10 shows that the effective
bifurcation point reveals itself rather sharply if looking at the time averages of the
noisy trajectories.

We can even find an analytical expression for the effective bifurcation point. As
shown in the Appendix, see Sect. 3.A.2 (p. 56) Eq. (3.52), the effective bifurcation
point is for small noise strength D given by the expansion

Reff = 1+
2√
3

√
χD∗+

22
15

χD∗+O
(

D
3
2

)
(3.29)

where D∗ = D/A2. With infinitesimal noise, the effective bifurcation point deviates
from the deterministic one (which is at R = 1) by a square root law in the variance
D of the noise. However, since this is an expansion in terms of

√
D, the next order

terms rapidly come into play as the noise increases. Figure 3.11 confirms Eq. (3.29)
with χ = 3.5 in a convincing way. The idea is also illustrated by Fig. 3.12 displaying
the probability distributions of the system state with different values of R. At the
bifurcation point of the noise-free system (R = 1) a broad unimodal distribution is
observed. For larger values of R a clear bimodal structure appears, and eventually

2 The notion should not be confused with the stochastic bifurcation point, an abstract mathemat-
ical concept introduced by Ludwig Arnold [5]. In contrast to our effective bifurcation point the
stochastic bifurcation is obtained from asymptotic limits. In our pitchfork bifurcation setting the
bifurcation structure would not be revealed. Moreover, asymptotic limits are not useful in robotics
due to finite behavior timescales.
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Fig. 3.10: Effective bifurcation diagrams for different noise strengths. The variance
D of the uniform distributed noise is increased from panel (a) to (f). The gray area marks
the hull of all trajectories (for each value of R 5000 iterations with positive and negative
initial value). The black dots mark the mean value of 20 000 iterations for each value of
R and the dashed line shows the effective bifurcation point determined by eye.

the probability for the state to be in the region around z = 0 decays exponentially to
zero.

We will encounter many illustrative examples showing that the effective bifurca-
tion point defines a working regime, where systems are particularly avid to self-or-
ganize. First examples will be given in the following.
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Reff

Fig. 3.11: Effective bifurcation point
in dependence on the noise strength.
The dashed line shows Eq. (3.29) with
χ = 3.5 and the black points show the
data taken form the simulations (partly
displayed in Fig. 3.10).
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Fig. 3.12: Stationary probability distributions of the states (z) for different values of
R. In all panels D = 0.005, see Fig. 3.10(d). (a) R = 1 (bifurcation point of the noise-free
system); (b) R = 1.1 (Reff for χ = 1.24); (c) R = 1.18 (Reff for χ = 3.5).



P
e
rs

o
n
a
l 
C
o
p
y3.3 Analyzing the Loop 41

3.3.5 Effective Bifurcation Point and Explorative Behavior

The effective bifurcation point is a novel concept with many interesting and far
reaching consequences for the closed loop control of embodied robots. Let us con-
sider a few examples, starting with a two-wheeled robot with each wheel being
controlled individually and the sensor measuring the actual wheel velocity. We use
in all examples the above controller with parameter C defining the feedback strength
R = AC, using A = I for simplicity in the following. In the applications, the noise
may be very strong and of varying nature, thinking for instance of a collision with an
obstacle as in Fig. 3.6, so that the above requirements for the validity of Eq. (3.29)
are not guaranteed. Nevertheless the concept of the effective bifurcation point re-
mains valid. In fact, numerical experiments support that there is a relatively sharp
value Ceff defining a favorable working regime in the sense explained above. You
may convince yourself by doing Experiment 3.3.

Experiment 3.3: Closed loop control of wheeled robots.
For this experiment you have two choices: (a) a single wheeled robot in a square arena and (b) a chain of robots. The
simulations start with the coupling set to C = 1.2 and the noise strength set to noise=0.1 (D = 0.01). Decrease the
coupling constants by entering:
>coupling=value
until the behavior starts to change frequently, which should happen around Ceff = 1.05. This is especially visible in
simulation (b), where below Ceff the chain barely moves. In order to exert external forces to the robots use either
<Ctrl>+<left Mouse button> or <Ctrl>+<right Mouse button>. You can add/remove random obstacles by pressing o
or O in all simulations.

The behavior of the robot is in good agreement with the message from the effec-
tive bifurcation diagrams of Fig. 3.10 and Fig. 3.12. With values C <Ceff the wheel
velocity is essentially fluctuating around zero, so that the robot executes a very slow
random walk. The amplitude of the fluctuations is increasing rapidly if C approaches
Ceff. With C�Ceff the state is caught essentially in one of the fixed points so that
the wheel velocity is fluctuating around this fixed point. Then, the robot is in one
of four states, moving either forward or backward or rotating on site clockwise or
counterclockwise.

A more favorable behavior occurs if C is close to Ceff since then there are occa-
sional random transitions between these four states so that the robot realizes a rather
effective exploration of the space. The nature of this exploration sensitively depends
on the value of C since it defines the frequency of the switching between the states.

3.3.5.1 Robot in Cluttered Environments

The benefits of this closed loop control mode reveal themselves most clearly if the
robot is colliding with an obstacle. In collision events, the wheels can get blocked
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z
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Fig. 3.13: The collision with an obstacle in the
potential picture of the dynamics. The robot
was moving forward, i.e. the state was at the
r.h.s (z > 0) minimum of the double well poten-
tial. The impenetrable object corresponds to an
infinitely steep rise in the potential so that the
state is bound to move to the left minimum and
the robot starts moving backward.

or at least slowed down3. In either case the effective feedback strength of the loop
decreases so that z and with it the output y of the neuron decays. The only activity in
the loop then comes from noise events, either by the measurement noise or the actu-
ator noise (there are many different possibilities for a jerkily motion of the wheels,
see the experiment). These fluctuations will be amplified if they are of the right
sign, i. e. if the robot is momentarily moving away form the obstacle since then the
wheels get free and the velocity can grow due to the still positive feedback. Hence,
after a (short) sequence of collision events the state of the system goes to the other
fixed point so that the robot is moving away from the obstacle, see Fig. 3.13 and
Fig. 3.14. We may say that in this elementary sense the robot ‘feels’ the obstacles
and generates a behavior away from them after a collision. There are no bumper
sensors necessary for this to happen. Instead the behavior is an emerging property
of our specific control mode close to the effective bifurcation point. You can verify
this by doing Experiment 3.3 with a single robot.

The experiments reveal also another important property, namely that, once the
initial hard collision has taken place, the probing of the obstacle by collisions hap-
pens in a quite gentle way so that the risk of damages is reduced. This is also an
immediate consequence of the dynamics under the effective bifurcation regime, see
Fig. 3.14.

As a consequence of this ‘feeling’ for the body, the robot will explore its envi-
ronment in an effective way also in the case of a heavily cluttered arena. In Sect. 3.5
we will discuss how the robot can get this ‘feeling’ of the body without collisions
by a virtual extension of the body using proximity sensors.

3.3.5.2 Emerging Cooperativity in a Chain of Robots

The sensitivity towards external influences produces an interesting effect if we con-
sider a chain of passively connected robots (via ball-joints) with each wheel being
controlled individually by a controller of the above kind. The behavior depends in
an even more sensitive way on the value of the feedback strength in the loops. The
region around the effective bifurcation point is again that of the most interesting
behaviors. There the wheel velocities can become already quite large (decisions are
taken) but can easily be switched by (i) noise events caused for instance by collisions

3 The wheel velocities may also change sign due to an elastic collision, in which case the robot
will automatically move away from the obstacle.
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with obstacles or (ii) by the influence of the forces exerted by the other robots in the
chain. In fact, due to the high sensitivity, the wheel velocity will have a tendency
to switch sign if a torque in the opposite direction is exerted by the other robots in
the chain. By switching the velocity, the wheel is now acting in the direction of the
force exerted on it. This self-amplification effect is essentially what is necessary for
a self-organized synchronization of the wheel velocities.

Video 3.3 demonstrates quite clearly the strength of this self-organized synchro-
nization effect, which not only makes the robot chain move into one direction but
also keeps it still explorative in the sense that, after some time, it spontaneously in-
verts its direction of motion. Moreover, when colliding with an obstacle, the chain of
robots often will change velocity in an integrated manner. Finally and most impor-
tantly, it will also effectively explore the spatial extensions of a maze, see Video 3.4
and/or do Experiment 3.3 with a chain of robots.

In order to demonstrate this point in a more general context, we have carried
out a series of experiments with a more complex controller. Instead of using a con-
troller for each wheel, each robot has now a controller with two motor neurons each
of, which receiving the inputs from the two wheel sensors. Thus, there is a 2× 2
coupling matrix C that we parameterize as

C =

(
c b
b c

)
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Fig. 3.14: Robot at a wall. (d) Neuron output y and wheel velocity sensor x of the closed
loop control system (with feedback strength R > Rc) before and after a collision with a
wall as obtained from an experiment with a real Khepera robot. Note that the wheels of
the robot may slip, such that the activity in the loop is slowly decaying at the wall contact.
Panels (a-c) display the corresponding potential V (z) the sphere marking a stationary
state (fixed point) of the system. Before the collision the system is in the fixed point with
positive sign (robot is driving forward). During the time 118 to 122 the robot is kept at the
unstable fixed point z = 0. At around 121.5 sec the robot starts moving backward because
of the noise amplification effect.
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Video 3.3: Emerging cooperativity
in a chain of TWOWHEELEDs. The
arena has no obstacles. Control is
completely decentralized, but the in-
dividual wheels spontaneously coop-
erate in the working regime close to
the effective bifurcation point. The
video can be watched at http://
playfulmachines.com.

Video 3.4: The chain of robots with
decentralized control in a regular
maze. Spontaneous cooperativity and
sensitive reactions to collisions helps
the chain to navigate in the maze
without any proximity sensors. The
video can be watched at http://
playfulmachines.com.

5

4

3

2

1

0

Fig. 3.15: Exploration of a maze by the chain quantified by the spacial entropy. The
average spacial entropy 〈H〉 is depicted in dependence on the coupling parameters c and
b. It is maximal if all sites are visited by the robot with equal probability and it is zero if
the robot remains in its starting position. Interestingly, the coverage of the maze is best
for the decentralized controller setting with b = 0, see [40] for details.

http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainFree
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze
http://playfulmachines.com/videos.html#vid:SensMotLoop:TrainMaze
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in accordance with the symmetries of the robot. The most essential point is that the
robot chain explores the space effectively only for very subtle combinations of the
parameters b and c. This is reflected by the spacial entropy (entropy of distribution
of visited sites), see Fig. 3.15. It is only with those parameter values that the 10
wheels of the chain coordinate their activities so that the chain can act as a whole.
In the two-dimensional parameter space, these combinations define a line of effec-
tive bifurcation points, see [40], which again shows the importance of that concept.
Even more interestingly, the best exploration and hence the best spontaneous co-
operation between the robots is obtained if b = 0, which means that the channels
decouple or that each wheel has its individual controller. This is an interesting result
in the direction of embodied robotics meaning that, due to the embodiment, higher
coordination is achieved with less control, see [40, 191] for more details and the
Videos 3.3 and 3.4.

3.4 Extending the Parameter Space

The analysis and results given so far have demonstrated that, under the closed loop
setting, very rich behavior is observed even if the controller neuron has only a single
parameter. This can be advanced further by including an additional parameter that
acts as a bias for the neuron. As we will see, this extension of the parameter space
creates a new behavioral feature—the system shows hysteresis. These properties are
investigated as before by first analyzing the fixed point nature of the deterministic
system.

3.4.1 Bifurcation Scenario.

When including a bias h into the controller, i. e.

K (x) = tanh(Cx+h)

the fixed point equation of the deterministic system is, written in terms of the mem-
brane potential, given by

z = R tanh(z)+h . (3.30)

Using the approximation of tanh(z) (Sect. 3.3.2), one gets from Eq. (3.30)

z = R
(

z− z3

3

)
+h . (3.31)

The stability and existence of the fixed points is well known so that we can draw
upon the results obtained for such systems, see e. g. [121]. The bias leads to a cusp
bifurcation where we have always one stable fixed point and additionally we observe
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Fig. 3.16: Bifurcation diagram for the closed loop with bias. The diagram depicts the
solution of z = R tanh(z)+h, see Eq. (3.30), as a surface over R and h, that is called cusp
bifurcation. Colors: blue, green are stable fixed points and red is unstable.
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Fig. 3.17: Bifurcation diagrams for z = R tanh(z) + h. The diagram depicts different
cuts through the surface in Fig. 3.16. (a) Section at h = 0; (b) Catastrophic bifurcation at
h=−0.1; (c) The hysteresis in dependence of h in the supercritical regime at R= 1.2, also
indicated in Fig. 3.16. (d) Typical cusp wedge showing the saddle nodes in dependence of
R and h. The colored points are correspondingly marked in (b,c). Colors: blue, green are
stable fixed points and red marks unstable fixed points.
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the emergence of a so-called saddle-node bifurcation point, sometimes also called a
catastrophic bifurcation because of the sudden appearance or disappearance of a pair
of fixed points, one stable the other one unstable. A saddle-node bifurcation point
occurs if the solution of the cubic fixed point equation (3.31) has three real solutions
of which two are coinciding. The solution, is plotted as a bifurcation diagram for the
parameters R and h in Fig. 3.16 showing a cusp bifurcation [2]. The saddle-nodes
are located at the line where the red and green surfaces are intersecting.

Figure 3.17 shows different sections of the fixed point structure for better illustra-
tion. The positions of the saddle nodes form the typical cusp wedge, see Fig. 3.17(d).
With R < 1, the system has only one stable fixed point. We call the system subcrit-
ical, since the fixed point is at small z and thus little activity occurs in the senso-
rimotor loop. For h = 0 we observe the same pitchfork bifurcation as before, see
Fig. 3.17(a). For h 6= 0 two disconnected branches emerge, see Fig. 3.17(b), and
the bifurcation becomes catastrophic, since the system state can undergo a dras-
tic transition for small changes in parameter values. To illustrate the consequences,
Fig. 3.17(c) displays the bifurcation diagram for the supercritical parameter R = 1.2
in dependence of h revealing a clear hysteresis effect. This means that the system
resides in its fixed point when the parameter h is slowly decreased or increased until
the fixed point disappears and the state jumps to the fixed point with the opposite
sign (dashed lines). If the parameter h is changed in the other direction the same
behavior is observed. Hence, for one parameter configuration the system can be in
two possible states and h can be used to force a transition.

The visualization of the dynamics can again be done in the gradient descent pic-
ture, see Fig. 3.18.

3.4.2 Application: Biasing the Behavior

Hysteresis systems have interesting properties that have been exploited in many
branches of science and technology. In our case, if we set the feedback strength a
little above the critical point, a periodic signal of the bias with small amplitude is
largely amplified by the dynamics of the sensorimotor loop. In the homeokinesis
control mode to be discussed further below, the bias will be found to self-regulate.
In that scenario, the amplification of the bias signals plays an essential role in the
emergence of nontrivial behaviors.

The properties of the bias can immediately be used for biasing the behavior into a
desired direction. For instance, in the simple two-wheeled robot experiment we can
force the robot to move preferentially into the forward direction by choosing the
same positive value of the bias for both the neurons. By choosing a bias of moderate
size, we can preserve the reactions of our two-wheeled robot to collisions with some
obstacle and nevertheless retain its forward preference, reducing the on-site rotation
probability so that the exploration of the space will be enhanced.
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Fig. 3.18: The hysteresis cycle in the gradient picture. The diagrams show the stages
of one hysteresis cycle starting from h = 0 (a) with the state at z > 0 as represented by the
sphere. Decreasing h leads to a deepening of the left minimum, while the right minimum
gets more flat, but the state remains at the minimum at z > 0, see (b). If h = −hc the
saddle-node bifurcation happens, i. e. both the maximum at z=0 and the right minimum
disappear so that the system shifts to the left minimum of the potential (c). Increasing h
until h = 0 brings us back to the initial situation with the difference that the system is now
at the fixed point with negative sign, see (d,e). The diagrams (f) and (g) show the switching
from the minimum at z < 0 to the minimum at z > 0 by increasing h. By decreasing h until
h = 0 the hysteresis cycle is finished, see (h,i).

3.5 Expanding the Body

In the scenarios considered so far, the robot can feel its environment only by col-
lisions or other direct physical influences. This is of course annoying in practical
applications where collisions might be dangerous. One way to help this is to virtu-
ally expand the body of the robot by exteroceptive sensors so that the collision can
be felt before it takes place physically. A convenient choice are infrared sensors,
which gradually change their sensor values as a function of the distance to an obsta-
cle. Let us assume we equip the robot with six such sensors as depicted in Fig. 3.19.
The output yi of the controller for wheel i ∈ {left, right} now is chosen as (dropping
time indices, same C for both wheels)

yi = tanh(Cxi +hi)

where hi is a bias given by a linear combination of the infrared sensor values s j

hi = ∑
j

Bi js j (3.32)
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(a) (b)

Fig. 3.19: Virtual expansion of the body. Infrared sensors, usually seen as exteroceptive
sensors measuring distances to an obstacle, are considered here as defining a soft expan-
sion of the body that is used as elastic collision sphere. The robot is the FOURWHEELED
of the LPZROBOTS simulator that can be operated in a two-wheeled mode, meaning that
the wheels at one side receive the same motor signal. The wheel velocity sensor reports
the mean of both wheel sensors. (a) Screenshot taken from a simulation. The infrared (IR)
sensors are drawn for illustration in black if they measure no obstacle and in red if they
do; (b) Wire-frame view with IR sensor rays.

with a conveniently chosen set of parameters Bi j (typically in [−1,1]) that determine
the reactions of the robot to the proximity sensors.

The biasing effect can be understood in terms of the unbiased loop by introduc-
ing an effective sensor value xeff, defined via Cxeff =Cx+h. Changing h according
to Eq. (3.32) acts like a variation of the sensor values xeff just like in a collision.
The effects of collisions can be mimicked if the Bi j are chosen such that a slowing
down or switching of the wheel velocity is generated when approaching an obsta-
cle. Moreover, by choosing C appropriately, the reactions of the robot can be made
more smooth or more robust against the switching signals hi, so that, by choosing
the couplings B and C, a large number of behavioral patterns can be achieved. Ex-
periment 3.4 shows that the robot will again explore its environment effectively,
however now without colliding with the obstacles.

We see here some parallel to the famous Braitenberg vehicles [22], in that we
can by simple means generate complex behaviors of the robot moving in an envi-
ronment. It is not difficult to imitate some of the vehicles proposed by Braitenberg
but we do not go into the details here. Altogether, the parallel is also in the gen-
eral attitude of externalizing complexity from the internal control structure to the
interaction with the environment.

Experiment 3.4: Expanding the body.
Start the simulation Expanding the Body (FourWheeled). Some obstacles are placed in the environment, you may add
more with o and remove them with O. Try different coupling strengths for the IR sensors by entering:
>alpha=value

The default value is 1.0. The coupling matrix set to Bi j = α
(
−1 0 1 0 1 −1

0 −1 −1 1 0 1

)
, which leads to an obsta-

cle avoidance behavior. You can also change each individual entry with the parameters B11-B26 to get a different
behavior. Alternatively you can try Expanding the Body (LongVehicle) where only four infrared sensors are used.
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One advantage of our setting is seen in the fact that the collision handling works
even in the case that the obstacle is not seen by the IR sensors. In that case the
physical collision will take place with the switching of the wheel velocities due to
the blocking effect on the wheels as described above. Thus there is always a kind of
minimal strategy for survival.

The remainder of this chapter is devoted to the introduction of neural networks
that are used for the implementation of the control systems. It may be skipped and
looked up as needed.

3.6 Realization by Neural Networks

The implementation of the parameterized functions for controllers and forward
models are realized in practice in many different ways. A standard approach is to
use artificial neural networks because they are universal, easy to implement, and
have well structured algorithms for the adaptation of the parameters. Since we want
to derive explicit expressions later on, we will introduce very briefly the main points
of that approach in the following.

We will consider a network of rate-coding neurons, where the activity of each
neuron at discrete time steps is represented by a single number, which can be inter-
preted as a mean firing rate. Actually, biological neurons have a very complicated
internal dynamics, but in a simplified view we can think of a membrane potential
that is driven by incoming spikes from other neurons. Once the membrane potential
has reached a certain threshold, a single spike is fired and the membrane potential is
reset. In this picture the time distribution of the spikes may carry information (time
coding). This is known to play a role for instance in correlation learning via spike
timing dependent plasticity (STDP) [36]. However, in many cases it was shown that
neurons transmit information mainly via their firing rate (mean activity), which is
especially prominent in coding of sensory stimuli. This is the so called rate-coding
paradigm, which is used in the artificial neural networks (ANNs) we are dealing
with. Viewed as information processing systems, ANNs are much closer to the brain
than to a classical computer program. In particular the ANNs are prominent due to
their ability to learn.

There are many excellent textbooks, e. g. [114, 167], dealing with the theory and
application of artificial neural networks, especially in robotics, so that we will sketch
here only the facts most relevant to our work.

3.6.1 Rate-Coding Neuron Model

Under the rate-coding paradigm, the neuron can be represented by a simple mathe-
matical function. The neuron is considered as an input-output device. The input is
represented by a vector x ∈ Rn and the output of a neuron i is written as
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oi = g(zi)

where g : R1→ R1 is the so called activation (or transfer) function and zi is the post
synaptic potential given by the weighted sum over the inputs as

zi = hi +
n

∑
j=1

Wi jx j

the Wi j being the synaptic efficacies of the i-th neuron connected to a neuron or
sensor input j and hi is a threshold or biasing term. We denote by Wi ∈ Rni the
weight vector of neuron i. The function g : R1→ R1 is typically a sigmoid function
like

g(z) = sigmoid(z) =
1

1+ e−z ,

which monotonously increases from 0 to 1 as z increases from large negative to large
positive values. We mainly use

g(z) = tanh(z) =
ez− e−z

e−z + ez (3.33)

mapping the input to the interval −1 to 1, see Fig. 3.20.

Fig. 3.20: Neuron activation
functions. Note the range of
sigmoid(z) is (0,1) whereas
tanh(z) maps to (−1,1). The
derivative of the hyperbolic
tangent is given by tanh′(z) =
1− tanh2(z).
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3.6.2 Supervised Learning

A neuron i from above maps the inputs x to output oi. The map is parameterized by
the weight vector Wi. The weights can be adapted in the following learning scenario:
given a set of input-output mappings (provided by a trainer) find Wi such that the
neuron reproduces these pairs as close as possible. In an on-line learning scenario,
the neuron sees an input x together with the target output oteach

i , which is provided
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by the trainer, in each time step. The error of the neuron is

Ei =
1
2

(
oi−oteach

i

)2
=

1
2

δ 2
i (3.34)

where oi = g(zi) is the current output of the neuron and δi = oi−oteach
i is the mis-

match between current output and target output. Gradient descent on this error yields
the update rule, also known delta-rule, for both the synaptic weights and the thresh-
olds as

∆Wi j =−εdix j (3.35)
∆hi =−εdi (3.36)

where
di = g′ (zi)

(
oi−oteach

i

)
= g′ (zi)δi , (3.37)

which can be considered as an error signal present at the output of the synapse Wi j.
The structure of di is generic since it can be considered as the result of propagating
the error signal δi at the output of the neuron through the activation function, thereby
producing a factor g′ (zi), backwards to the output of the synapse.

The update of Wi j is given by the product of this output signal multiplied by x j,
which is the activity at the input of the synapse. This is reminiscent of the general
rule introduced by D. Hebb [66] who postulated that the synaptic strength increases
if activities on the pre- and postsynaptic side are both high, often stated as “fire
together—wire together.” However the delta-rule is still different from pure Hebbian
learning. The difference of Eqs. (3.35–3.37) to Hebb’s rule is (i) that the postsynap-
tic activity is not that of the neuron but the error signal propagated back from the
output of the neuron and (ii) that the update can be both positive and negative. Nev-
ertheless we will find this parallel to Hebb’s rule very helpful also with our more
complicated learning rules driving the self-organization process.

3.6.3 Feed-Forward Networks

Neurons can be combined to neural networks in order to represent more compli-
cated input output mappings. In a typical feed-forward architecture the net realizes
a function f : Rn→ Rm , i.e. it maps inputs x ∈ Rn to outputs o ∈ Rm. The network
is organized as a sequence of layers, the neuron outputs of a layer forming the inputs
to the neurons of the subsequent layer. A network with N layers consists of the input
layer where x is fed in, a number of hidden layers, and an output layer of m neurons.
Numbering the layers from the input layer (k = 0) to the output layer (k = N) the
rule for feeding the input information through the network is given iteratively by

o(k)i = g

(
h(k)i +∑

j
W (k)

i j o(k−1)
j

)
, for k = 1,2, . . . ,N (3.38)
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(identical activation functions for all neurons) starting with o(0) = x. The output
vector of the network is given by o(N).

There is well known theorem stating the universality of neural networks as a
function approximator: Already a network with only one hidden layer (with a suf-
ficient number of neurons) is able to represents any function F : Rn → Rm with
arbitrary accuracy see [33]. An intuitive explanation is that the neurons of the hid-
den layer can be organized into groups so that the collective receptive field of a
group covers regions in input space mapping to about the same value of the target
function f . Then, all the output layer has to do is to weight the contributions of the
groups in order to produce the correct output o(teach) = f (x) to any input x.

This function approximation can be learned by gradient descending the error

E =
(

o−oteach
)2

. (3.39)

This can be transformed into a systematic procedure for the individual updates of
the synaptic weights

∆W (k)
i j =−εd(k)

i o(k−1)
j , (3.40)

which is again Hebb like. The error activities are obtained in an iterative way

d(k)
i = g′

(
z(k)i

)
∑

l
d(k+1)

l W (k+1)
li , for k = 1, . . . ,N−1 (3.41)

starting with d(N)
i = g′

(
z(N)

i

)(
oi−oteach

i
)

as in the single layer case. The error sig-
nal for neuron i in layer k < N is produced by the weighted sum of the error signals
in the layer k+1 multiplied by the derivative of the gain function. This is the famous
error backpropagation rule [180]. In matrix notation we write

d(k) = G′
(

z(k)
)(

W (k+1)
)>

d(k+1), for k = 1, . . . ,N−1 (3.42)

where G′ is the diagonal matrix given by G′i j

(
z(k)
)
= δi jg′

(
z(k)i

)
with δi j being the

Kronecker delta and W> being the transpose of a matrix W .

3.6.4 Recurrent Networks

The feed forward networks serve well the purpose of parametrized function approx-
imation. However in many applications, in time series prediction e.g., the output of
the network is depending on previously seen inputs. Another example is the real-
ization of a controller with internal states, see Eq. (3.4). This can be achieved with
additional inputs into the network generated from earlier events. A more elegant way
consists in recurrent neural networks (RNN), which internally built up a memory of
the past by time delayed recurrences.
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A simple RNN, introduced by Elman [48], is obtained by equipping a feed-for-
ward network with feedback loops providing a time delayed copy of the outputs of
all neurons of the net, or a group thereof, back to the neurons itself. As before the
inputs are presented to the network at times t = 0,1, . . .. The iterative rule (3.38) for
evaluating the output of the network is now (sum over repeated indices)

o(k)i (t) = g
(

W (k)
i j o(k−1)

j (t)+V (k)
i j o j (t−1)+h(k)i

)
, for k = 1,2, . . . ,N (3.43)

where o(0) (t) = xt is the current input into the network, o(t−1) the vector of pre-
vious activations of the ensemble of neurons in the net, and V is a weight matrix
controlling the feeding back of these activations. We are not going into any details
here since we are introducing recurrences in a different way by the principle of
homeokinesis, see Chap. 5.

The network is now a discrete-time dynamical system driven by the inputs xt .
Depending on the weights, the network can develop the full scope of dynamical
behaviors ranging from fixed point attractors over limit cycles to chaos. Again the
important point is that the weights can be learned such that the network reproduces
a target dynamics. The learning rules are a bit more complicated but are systematic
and well investigated. It is this property which makes the recurrent networks valu-
able tools for time series prediction, system identification, signal processing, and
last but not least robot control.

3.7 Summary

To summarize, given a simple closed loop system with a single nonlinear neuron
we find non-trivial fixed points and hysteresis depending on the control parame-
ters. This type of dynamics is found in many systems, e. g. in statistical mechanical
models of magnets, see [165]. We introduce the effective bifurcation point, since
we consider the system with noisy perturbations. For robot control it seems suitable
to keep the feedback strength R at the effective bifurcation point, slightly above the
bifurcation point of the deterministic system, in order to have two stable fixed points
allowing the system to switch either by changing the bias h or by external influences.
In the case of multiple sensors and motors we get of course a much larger number
of attractors, Neimark-Sacker bifurcations, limit cycles and so forth, which will be
work out in Chap. 7 and demonstrated by applications to robotic systems later in
this book.
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Appendix 3.A Mathematical Details

We give here the mathematical details for the stability analysis of the fixed points
without bias and the evaluation for the position of the effective bifurcation point.

3.A.1 Stability Analysis

The properties of the fixed points are most easily obtained by a linear stability anal-
ysis. We put zt = z∗ + ut where u is small. The state dynamics zt+1 = Rg(zt) is
linearized as

z∗+ut+1 = Rg(z∗+ut)

and by using Taylor expansion one gets

ut+1 = L(z∗)ut

where
L = Rg′(z∗)

is the derivative. One has only to show that 0 < L < 1 in order to prove that ut → 0
as t→ ∞. Using the approximation Eq. (3.23) we get

L = Rg′(z∗) = R
(

1− 3(R−1)
R

)
= 3−2R

so L < 1 if 1.5 > R > 1, provided tanh(z) = z− z3

3 is valid, i.e as long as R close
to 1. However if R� 1 then |z| is very large and one gets from the fixed point
equation ( z = R tanh(z)) that z∗ w R , so L = R(1− tanh2(R)) or approximately
L = 4Rexp(−2R), since at large R we may write approximately

tanhR =
eR− e−R

eR + e−R =
1− e−2R

1+ e−2R ≈ 1−2e−2R

Hence L goes exponentially to 0 as R→ ∞ so that the stability of the fixed point
increases with increasing R.

These results have been derived in some detail since L is the central quantity of
the time-loop error, as we will see later. We have seen here that it is directly related
to the stability of the fixed points of the state dynamics. In the higher dimensional
cases L is the Jacobian matrix of the dynamical system the eigenvalues of which
define the stability of the system.
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3.A.2 Determining the Effective Bifurcation Point

The aim now is to find an explicit expression for the position of the effective bifur-
cation point (EBP) in the case of the pitchfork bifurcation for the dynamics given
by Eq. (3.19), i. e.

zt+1 = Rg(zt)+ρt+1 =−
∂

∂ zt
V (zt)+ρt+1

The position of the EBP is defined by the empirical constant χ defining the relation
between the barrier height and the variance of the noise as

∆V = χ
〈
ρ2〉 (3.44)〈

ρ2
〉

being the variance of the noise in the z dynamics.

3.A.2.1 Series Expansion of the EBP in the z4 Case

In order to find ∆V we consider the z4 potential case first, see Eq. (3.26)

V (z) =−R−1
2

z2 +
1

12
Rz4 ,

where the maximum is given by V (0) = 0 and the minimum by V (z∗) with

z∗ =±
√

3
(R−1)

R

being either one of the stable fixed points so that the barrier height is

∆V =V (0)−V (z∗) =
3
4
(R−1)2

R
.

Eq. (3.44) reads now
3
4
(R−1)2

R
= q . (3.45)

where q = χ
〈
ρ2
〉
. The solution and its power series expansion (Taylor) is

R = 1+
2
3

q+
2
3

√
3q+q2 = 1+

2√
3

3
√

q+
2
3

q+O
(

q
3
2

)
In order to get an expression in terms of the original noise strength D =

〈
ξ 2
〉
,

i. e. the one featuring in the x dynamics, we use
〈
ρ2
〉
=
〈
ξ 2
〉

C2 = DR2/A2 =: D∗R2

so that now q = χD∗ and we have to solve

∆V = qR2 . (3.46)
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This equation is of third order in R so that it can be solved explicitly. The solution
however is quite complex so that we better aim at establishing a series expansion in
terms of q since we are mainly interested in the low noise case anyway. We try a
power series expansion for R in terms of

√
q as

R = 1+m
√

q+nq+ pq
3
2 +O

(
q2) (3.47)

and expand the condition given by Eq. (3.46) in terms of q as

3
4
(R−1)2

R
−qR2 =

(
3
4

m2−1
)

q+
(

3
2

mn− 3
4

m3−2m
)

q
3
2 +O

(
q2) (3.48)

where now q = χD∗. If the expansion Eq. (3.47) is to be a solution of Eq. (3.46), the
coefficients in Eq. (3.48) must be zero in all orders that are relevant for the expansion
of the solution. Up to order q

3
2 the coefficients are equal to zero if m = 2/

√
3 and

n = 2 so that we get the result

R = 1+
2√
3
√

q+2q+O
(

q
3
2

)
.

Putting the results together, the low noise expansion of the EBP in the z4 case is

Reff = 1+
2√
3

√
χD∗+2χD∗+O

(
D

3
2

)
(3.49)

with D∗ = D
A2 .

3.A.2.2 Series Expansion of the EBP in the tanh Case

The expression of the fixed point (FP) in the case of infinitesimal noise has been
given already in Eq. (3.23). In order to get an expansion for the EBP comprising
the next order we have to find first the corresponding expansion of the FP. We put
R = 1+u with 0 < u and try z = m

√
u+nu+ pu

3
2 +O

(
u2
)

in the expansion of the
FP condition z = R tanhz obtaining

R tanh(z)− z = αu
3
2 +βu2 + γu

5
2 +O

(
u3)

where α =
(

m− m3

3

)
, β =

(
n−m2n

)
, and γ = 2

15 m5−
(

m3

3

)
−mn2+ p−m2 p. The

coefficients α , β , and γ are shown to be zero if m =
√

3, n = 0, and p =
√

3/10 so
that the two stable FPs have the expansion

z∗ =±
(
√

3u+

√
3

10
u

3
2

)
+O

(
u

5
2

)
. (3.50)
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The potential now is, see Eq. (3.24),

V (z) =
1
2

z2−R ln(coshz)

with the height of the barrier obtained as

∆V = 0−V (z∗) =
3
4

u2− 3
20

u3 +O
(
u4)

The EBP is found by using for u the expansion u = m
√

q+ nq+ sq
3
2 +O

(
q2
)

and
R = 1+u in the condition ∆V = χD∗R2 so that

3
4

u2− 3
20

u3−qR2 =

(
3
4

m2−1
)

q+
(

3
2

mn−2m− 3
20

m3
)

q
3
2 +O

(
q2) (3.51)

the first two coefficients being zero if m = 2
3

√
3 and n = 22

15 so that for small noise
strengths we obtain the solution of Eq. (3.45) for Reff by the expansion

Reff = 1+
2√
3

√
χD∗+

22
15

χD∗+O
(

D
3
2

)
(3.52)

with the leading square root dependence for very small D as in the case of the z4

potential.
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Principles of Self-Regulation — Homeostasis

Abstract: We have seen in Chap. 3 that there are specific working regimes in closed sen-
sorimotor loops where the agents exhibit interesting behaviors. The challenge is now to
develop general principles so that the agent finds these regions by itself. One essential point
at this level of autonomy is the ability to survive in hostile situations, which, as a first pre-
requisite, requires a certain stability against external perturbations. An example of this is
homeostasis, one of the prominent self-regulation scenarios in living beings. This chap-
ter introduces Ashby´s homeostat as a concrete example from cybernetics and develops a
general principle of self-regulation as a first step towards a general basis for the self-orga-
nization of behavior.

As a general principle of self-regulation, homeostasis would deserve a broad
appreciation in the context of this book, even more so as it has recently found revived
interest not only as a guiding principle for the resilience of the brain [50, 50, 54,
171, 174–176] but also as a general concept in the robotics community, see [80,
118, 119, 193]. Nevertheless, in order to focus on the developments to be presented
later, we will only select one specific trait, Ashby’s homeostat, of the earlier history
of homeostasis. We select the homeostat since we feel very much intrigued by the
audacious initiative of William Ross Ashby to built a machine in order to prove
a general principle, homeostasis, of living beings. This is very close to our own
ambitions with the main difference that we hypothesize the principle, homeokinesis,
first, and try it in various machines to understand its consequences. Different from
the homeostat, these machines do not realize the goal of ultrastability in challenging
environments but establish a playful self-exploration of potential motion patterns,
thereby reaching a degree of autonomy that goes much beyond the objective of pure
self-stabilization.

This chapter will, after the short excursion into the history, present a general
principle of self-regulation based on minimizing the prediction error of the adaptive
forward model. The general setting is exemplified by experiments with our BAR-
REL, demonstrating the emergence of different behavior modes. In most cases, the
principle is shown to drive the system towards maximum stability, but in excep-
tional cases we observe also oscillatory modes depending on the embodiment of
the system. Despite of these interesting findings, the principle is argued to lack an

59
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intrinsic drive for innovation. This drive will emerge with homeokinetic learning to
be presented in the next chapter.

4.1 History and Development of Homeostasis

Originally homeostasis was conceived as an approach to complex control mecha-
nisms in living beings [28]. For instance, blood pressure depends on many local
variables, which are in turn affected by many hormonal, nervous and chemical pro-
cesses, but it is stabilized globally without a central control unit. In the cybernetic era
the notion of homeostasis has served as a kind of metaphorical explanation of var-
ious phenomena ranging from physiological control to social relations and formed
an important basis for the intended development of self-organizing machines.

4.1.1 Ashby’s Approach

William Ross Ashby, displayed in Fig. 4.1, studied the underlying properties of such
mechanisms in living beings from a theoretical point of view and tried to transfer
this principle to the design of control architectures in machines [8]. He found it
natural in this context to consider dynamical systems involving switching processes,
intermittency, memory, and dynamic relations with the environment. In particular

Fig. 4.1: Portrait of Ashby aged 45 in 1948. Image included with the permission of The
Estate of W. Ross Ashby.
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the notion of ultrastability appeared to him of central importance for the mechanisms
underlying life.

Ashby claimed that in complex dynamical systems the notion of linear stability
is not sufficient. Such systems should be able to cope with large deviations from a
target state or even to actively produce such deviations in order to achieve structural
reorganization in their course. Ultrastability refers to systems that in addition to
their state dynamics also possess a parameter dynamics, which is supposed to mod-
ulate the system dynamics such that eventually a target state is approached even in
presence of heavy structural deformations.

4.1.2 The Homeostat

Ashby’s homeostat [8], see Fig. 4.2, was invented and actually built more than half a
century ago. It was intended as a working illustration of the principle of homeostasis,
a term coined by Cannon [28] in the 1930s. The machine built by Ashby consisted
of four rotatable magnets whose deviations from their target orientation gave rise to
currents in a number of coils that also influenced the orientation of the magnets. The
strengths of the interactions among the magnets are subject to switching processes
realized by resistor values produced by pseudo-random multi-selectors.

(a) (b)

Fig. 4.2: Pictures of the Homeostat. (a) The four units, each one reacting on all the
others. (b) Close view of one unit. The coil ABCD encircles the magnet M, which is
suspended by the needle pivot. The suspending wire extends forward ending in a semicir-
cular plastic trough filled with water, which has electrodes at each end. The potential is
measured at the pivot socket. Images from [7].
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4.1.2.1 Theory

The dynamics of the system can be described mathematically, see [6, 8] by a dy-
namical system in n = 4 dimensions

ẋi =
n

∑
j=1

ai jx j (4.1)

the xi measuring the angles of the magnets. The diagonal self-couplings aii are ad-
justed by hand to negative values initially, such that the system has a bias towards
stability. The coefficients ai j for i 6= j are subject to the switching dynamics and are
automatically chosen from a set of 9 possible values, which are fractions as 0.48,
0.73, 0.89 and 1.0 of some maximal value, the corresponding negative values or
zero so that actually there are 129 different dynamical behaviors. The switching dy-
namics introduces a state dependence into the parameters so that the Eq. (4.1) is a
nonlinear dynamical system.

In a run, the system state x is allowed to evolve for some time. In the course of
time it will either approach some attractor inside the critical surface or eventually
reach the critical surface: If |xi| ≥ π

4 a new set of random variables ai j for all off-
diagonal couplings towards unit i is drawn such that the system is changed each
time a potential instability is encountered. Since in the hardware implementation
the critical surface is simply given by a mechanical constraint, the state is assumed
not to evolve further once the critical surface, defined by the terminal positions of
the magnets, is reached.

In the stable region of the combined parameter and state space, the system toler-
ates small noise. But by an external impact that is sufficiently strong, e.g. the loss
of a physical connection between node i and j or by reversing the sign of an ai j,
the system returns, via (repeatedly) hitting the critical surface, to a parameter set-
ting with the desired dynamical properties. For random couplings, negativity of all
eigenvalues is realized only with probability 2−n, i.e. homeostats with large n will
converge, in general, only after very long transients. Further, oscillatory behavior
or slow dynamics may occur inside the critical region such that the time between
switching events may be prohibitively long. If the eigenvalues have a small negative
real part, the system will be prone to noise.

The homeostat provided an early example of how an adaptive control system may
solve complex problems even under heavy structural perturbations. However, as the
theoretical considerations made clear, the approach does not scale. The complex-
ity increases exponentially with the number of degrees of freedom so that Ashby
never achieved the general purpose, brain-like devices, he initially was searching
for. There have been later developments of the homeostat, but without significant
results. Nonetheless, the homeostat over the years continued to influence our under-
standing as to how the large analogue, adaptive networks in biological brains, might
achieve stability. Recently, as mentioned above, we have been witnessing a revived
interest in the concept of homeostasis in various fields ranging from synaptic plas-
ticity to the control of autonomous robots.
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4.1.3 Learning Homeostat

The main idea of the homeostat can be reformulated in terms of continuous adap-
tive dynamical systems by replacing the hard boundaries with smooth nonlinearities,
see [67]. If the critical surface is specified by soft thresholds, the state dynamics may
be controlled to avoid the boundaries and to stay near the target state by following
the gradients of the threshold functions. This can be translated into a learning al-
gorithm for the parameters of the system. The resulting system could be treated
analytically, so that explicit solutions were obtained at least in a number of special
cases. It could be shown [67] that an equivalent of Ashby’s parameter switching is
obtained by the learning dynamics with much better scaling properties so that one
of the main disadvantages of Ashby’s homeostat can possibly be circumvented in
that way, but the topic has not been followed up so far.

This way of merging state and parameter dynamics can be considered as a mod-
ern version of Ashby’s original thinking. The productive interplay between learning
and behaving is also one of the central topics of this book.

4.1.4 Relating Time Scales

One of the most remarkable features of the homeostat is the interplay between the
system and the parameter dynamics. In order to make this more explicit let us com-
pare Ashby’s machine with nowadays realizations of adaptive systems. The latter
are characterized usually by the separation of time scales for the learning and the
behavior of the system. The reason is that most of the known learning algorithms
are prone to instabilities if learning and system dynamics are not protected against
each other—much in difference to Ashby’s thinking where the system dynamics,
when reaching the critical boundary, triggers a random change of the parameters,
which leads to a largely different system dynamics and so on. This is an interplay
between the two subsystems, which is remarkably stable and keeps the complete
system both sensitive to external influences and stable against strong perturbations
or even damages done to the system.

By the way, the human brain masters the same problem. Neuronal and synap-
tic dynamics are running concomitantly most of the time so that there must be a
special organization preventing catastrophic interrelations between the two subsys-
tems. Thus we feel challenged both by the results of modern brain research and the
audacious thinking of Ashby and the early cyberneticists to tackle the problem of
self-regulation by establishing a productive interplay of the neuronal and synaptic
dynamics.
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4.2 Self-Regulation

The capability to self-regulate under challenging environmental conditions is the
essential feature of homeostasis. This has been achieved in the case of Ashby’s
homeostat by specifically engineering the system—the installation of the parameter
switching dynamics—and in the learning homeostat by defining the learning dy-
namics and the set point. Instead of specifying a certain set point, we are looking
now for a principle that is domain independent and self-contained so that we can
extend the self-regulation paradigm to more general situations.

4.2.1 First Ideas

Self-organization and self-determined development require a certain amount of self-
awareness of the robot. In particular, the robot should be able to predict the conse-
quences of its actions in the near future. This can be achieved by equipping the robot
with an adaptive internal model. We may restrict ourselves in the present setting to
the most simple case where the model is to predict the sensor values measured in
the next time step, see Fig. 3.3, so that we may use the forward model as introduced
in Sect. 3.1.2.

This kind of model plays an important role in our approach so that we are going
to go a bit deeper into detail here. Let us consider by way of example the BARREL
as introduced in Sect. 3.2, in order to get an understanding of what such a forward
model is about. Actually, the BARREL with its internal weights driven by restricted
motor forces is quite a complicated physical object, with 8 degrees of freedom (three
translational, three for the orientation in space and two for the internal weights), in
general interacting with other physical objects like the floor (which may be struc-
tured and/or highly elastic) and other obstacles in an intricate way.

The BARREL can only be modeled in full generality by using its equations of
motion in some convenient representation, like the Lagrange formalism of classical
mechanics, together with the details of the interactions. Given the relevant informa-
tion, including the coordinates of the BARREL and the structures of both the ground
and the obstacles, these equations can be solved and this is exactly what the simu-
lation software does. However, we neither have this information (we have only the
inclination of the two internal axes via the sensor values) nor do we want to rely on
them. Self-organization, at least as we know it from nature, means the emergence
of dimensionally reduced modes in complex physical systems. The rolling mode
on even ground is the best example since it can be described by a largely reduced
dynamical system.

The reduced dynamical complexity of these “natural” modes is reflected in the
complexity requirements for the model. Quite surprisingly we found in numerous
applications that a linear or pseudo-linear model is all we need for our purpose of
driving the system into a self-organization phase. In detail, we use in Eq. (3.6) in
the most simple setting
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M (x,y) = Ay+b (4.2)

where the motor values are given by y = K(x) with

K(x) = tanh(Cx+h) (4.3)

so that the dynamics model (3.8) is ψ (x) = AK (x)+b. The sensorimotor dynamics
can be written as

xt+1 = Ayt +b+ξt+1 (4.4)

where ξ gives the modeling error, b is a bias vector, and the m×n matrix A repre-
sents the response of the sensors to the motor values. Both quantities are subject to
a fast and never ending learning dynamics, which is the essential compensation for
the simplicity of the models.

The forward model can be trained by minimizing the prediction error Epred =
ξ>ξ (3.9) by gradient descent as described in Eq. 3.10 (p. 26). The parameters to
be adapted are the elements of both the matrix A and the bias vector b. In an online
learning scenario we obtain in each time step a pair (xt+1;yt) and try to adapt the
parameters such that the modeling error ξ T ξ is reduced. In the concrete case, the
gradient descent according to Eq. (3.10) yields the update rule (omitting the time
indices)

∆Ai j = εAξiy j (4.5)
∆bi = εAξi (4.6)

with a conveniently chosen learning rate εA > 0. The index i is running over all
sensors, i. e. i = 1,2, . . . ,n and j over the motors as j = 1,2, . . . ,m. In practice, the
updates should be complemented with a decay term so that the model has a chance
to forget outdated contents. The update rule, essentially the famous Delta rule [183],
has a simple interpretation in the context of neural networks introduced in Sect. 3.6.
For instance, ∆Ai j may be interpreted as the product of the input y j into a synapse
Ai j times the error activity ξi at the output of the latter. This is reminiscent of Hebb’s
rule of learning in the brain indeed.

One important point is the choice of time scales. In our simple BARREL case
the time scale for the parameter dynamics Eq. (4.5) is just a few seconds real time
by choosing εA appropriately, see Fig. 4.3. This unusual fast learning is feasible in
the context of self-regulation not only for the pure rolling modes, as we will see
later. Learning in this sense does not mean that the parameters converge so that the
prediction error is going to zero. Instead it turned out to be sufficient for the self-
organization scenario developed in this book that relative information is provided in
order to discriminate the good (in the sense of natural modes that can be modeled
well) from the less interesting regions of the behavior space.

This is good news which, however, leaves the essential question open. If we
want such modes to self-organize, how can a model help in this emergence process
if it actually “understands” only the product and not its emergence, i. e. how to get
there. The controller on the other hand urgently needs the help of the forward model
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Fig. 4.3: The matrix elements of the model matrix A in a relearning process. The
behavior of the robot is modified three times by changing the parameters of the controller
(dashed vertical lines). The model is seen to adapt in a very short time to the new situa-
tion. In the final situation we had C11 =C22 = 0.5 and C12 =−C21 = 0.1. The relearning
times are largely determined by the inertia of the BARREL since the direction of rolling
has to change as a consequence of the parameter switching.

in order to find its specific control mode. This is a central problem of autonomous
development, namely that controller learning and model learning have to bootstrap
each other.

4.2.2 Learning the Controller from Specialized Models

We have seen above, that, given a controller, the model can learn easily the cor-
relations between the actions and the induced sensor values. This is not a surprise
given that we accept larger modeling errors and reduced competencies of the for-
ward model (specialized model). In order to understand more about the mutual boot-
strapping of model and controller, we have to consider the inverse problem. Let us
assume we have learned a model for a given behavior generated by the parameters
C and h of the controller. Can we reobtain the behavior from knowing the model? In
principle this should be possible, since the model error can not only be minimized
by changing the model for a given behavior, but the error of a given adaptive model,
even if well trained, depends just as well on the behavior.

In fact, the error will be small if the system is in one of its more natural modes
(like the rolling mode of the BARREL), it will be rather large if the system is in
more complex modes (like the “lolloping” mode in Video 3.2), and very large if the
system is in an erratic motion. Can the controller learn the natural modes at least
from a specialized model, i. e. one that has learned to represent a specific mode?
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The question can not be answered in general but the practical experiences show that
such models are well able to attract the controller towards the pertinent behavior.

Learning the controller from the prediction error of the model is schematized in
Fig. 4.4. In the specific setting given by Eqs. (4.3, 4.4) above, we find the learning
rules as (omitting time indices, derivation in the Appendix, Sect. 4.A (p. 71))

∆Ci j = εcηix j , (4.7)
∆hi = εcηi , (4.8)

where
ηi = ∑

j
A jig′ (z j)ξi , (4.9)

with z j = ∑
k

C jkxk +h j and g′ (z) = tanh′ (z) = 1− tanh2 (z). η is the result of back

propagating ξ through the forward model and the output function of the controller.
Similar to the case of model learning we may add a small decay term to the learning
rule. The matrix A and the column vector b defining the forward model are assumed
to be known for the moment.

Fig. 4.4: Learning the controller from the forward model. The task is now inverted.
Given the forward model, how can the controller be adapted so that the behavior of the
robot can be well predicted by the model.

Experiment 4.1: Learning controller from forward model
Start the simulation Learning controller from model.It is now running with εc=epsC=0, εA=epsA=0.1. Check the
convergence of the matrix A using the GUILOGGER (<Ctrl>+G). After convergence stop learning of the model by
entering
>epsA=0
Change the behavior by pressing ‘s’ or ‘S’ (in the graphical window) multiple times which scatters the parameters of
C by random values in [−0.2,0.2] or [−0.5,0.5] respectively. Switch on learning of the controller:
>epsC=0.1
Watch whether the previous behavior is reestablished. Try more drastic changes by pressing ‘r’ or ‘R’ to reinitialize
C randomly (see Experiment 3.2). Eventually you may wish to start anew with switching to exclusive model learning
using epsC=0, epsA=0.1.
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Fig. 4.5: Behavior of the controller parameters when learning the behavior from pre-
specified models (rotation matrices). At seconds 32 and 65 the model was externally
changed. Between the switches the controller matrix C clearly has the rotation structure.
The relearning of the behavior takes only a few seconds.

The idea can be corroborated experimentally, see Experiment 4.1 or Fig. 4.5,
which clearly demonstrate that the controller learns in just a few seconds the new
behavior prescribed by the model in the case of the pure rolling modes. On the
other hand, as the reader easily convinces himself by Experiment 4.1, learning the
controller from a model behavior is also feasible with more complex modes of be-
havior. For instance, we may use one of the above learned models for the “lolloping”
modes. As the experiments show, the controller can be recovered from such a model
in nearly the same reliable way as in the rotational mode. This puts some credibility
into the postulate that behavior, in the natural modes at least, can be learned from
having a simple forward model. In other words, these extremely simple forward
models can act as a kind of “role model” for quite complicated behaviors.

Note that even though the learning process may leave a non-vanishing residual
error, the procedure does not fail because mainly the relative errors matter.

4.2.3 Homeostasis: Self-Regulated Stability

Before putting the pieces together, let us summarize the results achieved so far. We
have seen that simple controllers can command complicated behaviors if they ex-
cite nontrivial physical objects in the closed loop control mode. On the other hand,
we have seen that forward models with restricted competencies can host very com-
plicated behaviors like rocking, jumping or kind of lolloping in our BARREL case.
Moreover, we have seen that these two units can teach each other very effectively.
We can imagine this as a kind of mutual, body mediated attraction between these
two units. However, this mutual attraction phenomenon was possible only if one of
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the two was pre-specified from outside or learned in an earlier episode to realize
a specific mode of behavior. What will happen if we let the two teach each other
simultaneously? Obviously the attraction will now drive both model and controller
towards each other. Without any goal or purpose given from outside there are more
questions than answers. Will the system go into a specific mode of behavior and
which one will it be? Can we expect any systematics from such a procedure and
what is the role of the embodiment in such a process?

Fig. 4.6: How the controller and the model teach each other. The prediction error
provides a learning signal for both the model and the controller.

The general setting is sketched in Fig. 4.6. In the above realization for both the
model and the controller we simply have to learn both model and controller simul-
taneously so that we now have a combined dynamics consisting of the physics, the
model parameters, and the controller parameters, altogether a dynamical system in
a space of 20 dimensions with comparable time scales of the subsystems.

The idea can easily be checked experimentally, see Experiment 4.2. Considering
many different initializations for the C matrix reveals that the concomitant learning
of controller and model most of the time runs into a fixed point of the combined
dynamics where the robot is at rest, see Fig. 4.7. Actually, this is not surprising
since in a physically stable situation the model can easily learn the motor-sensor
correlations so that the prediction error has a minimum.

Experiment 4.2: Homeostatic control of the BARREL

The simulation Homeostatic control of BARREL starts with the robot at rest and will not leave this state by itself.
The parameters are εc=epsC=0.1, εA=epsA=0.1. Exert external forces to the BARREL by pressing ‘x’ or ‘X’ (in
the graphical window) or use <Ctrl>+<left Mouse button> or <Ctrl>+<right Mouse button>.You can speed up/slow
down the simulation by pressing ‘+’/‘-’. Surprisingly the robot does not always come to rest but enters a periodic
forward/backward locomotion behavior. Try different learning rates when the robot is in such a mode for instance:
>epsA=0.005
The interval of forward and backward motion becomes longer.
Try >epsC=0.5 and >epsA=0.5. and observe the behavior. Eventually the robot will stabilizes into the “do noth-
ing” regime, since the model can learn the behavior quick enough.
You may reinitialize both the parameters of the controller and the forward model randomly as described in Experi-
ment 3.2. For large learning rates the system comes to rest in almost any case. For low learning rates we observe often
oscillatory behavior.
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Fig. 4.7: A long run of the BARREL with random reinitialization of the C matrix every
90 sec. The reinitialization of the controller matrix is followed by a relearning of both the
model and the controller. In most cases (marked by gray bars) there is a rapid convergence
towards a stable situation. In other cases the learning dynamics remains active, which
corresponds to a richer dynamics of the system in the sweeping modes. Parameters: εc =
0.5,εA = 0.1, no friction.

On the other hand, when starting the controller or the model with a rotation ma-
trix or if the robot is kicked from outside into a rolling motion, something interesting
happens: the BARREL starts rolling, but it will not end up in a fixed rotation mode.
Instead it increases velocity then decelerates, reverses velocity and starts the same in
the opposite direction. This slowly oscillating mode will then continue forever. So,
instead of realizing just one behavior (rolling mode with fixed velocity) the robot
sweeps through the behavior space of the possible rolling modes. This is not only
seen at the level of behaviors but is clearly reflected by the structure of both the
C and A matrices, which sweep (more or less periodically) through the space of
rotation matrices. The phenomenon is discussed in more detail in Sect. 4.B (p. 73).

The reason for this behavior is seen in the mutual teaching scenario of model and
controller. Both components are trying to imitate each other but since the learning
needs time one of the two is always lagging behind the other with a change of
roles after some time. Most importantly the model is lagging behind the physical
mode. This is also supported by the experiment: for large learning rates the system
comes to rest most of the time—the lag between model, controller and physical
mode is small. However if the learning rates are small this lag is significant and we
observe the periodic forward/backward behavior. In Chap. 5 we will trace back this
behavior to a very general phenomenon, the spontaneous symmetry breaking, which
is ubiquitous in self-organizing systems.

The preceding investigations show that, depending on the starting conditions
and/or external perturbations, the mutual attraction mechanism between model and
controller provides a self-regulation into body related behaviors, which may be os-
cillatory or at a stable fixed point attractor. The latter correspond to stable physical
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states where the body is at rest. The system can be switched from one to another by
strong external mechanical perturbations, see Experiment 4.2.

Nevertheless, so far there is no intrinsic drive for innovations that might lead
the system out of these states. The most obvious reason for the lack of initiative is
seen in the fact that physically stable situations are candidates for small prediction
errors, since the models can most easily adapt to such a situation. In exceptional
cases, this may produce unexpected results, like the sweeping mode, if we have an
exceptionally high degree of symmetry in the system. In other applications, like with
a humanoid robot, one finds that the landscape of behaviors is mainly characterized
by stable attractors of the dynamics. In a way, the method described so far realizes
a version of Ashby’s homeostasis [8] or even ultrastability in a self-referential way.

4.2.4 Conclusions and Outlook

The self-regulation towards the regimes of high stability is a self-supporting effect
that destroys any drive for development. In fact, in order that the agents feel chal-
lenged to do something new, the controller should provide new experiences instead
of stabilizing motion patterns established already in the model. The ultimate rea-
son for that behavior is contained directly in our objective function, given that the
prediction error is minimal if the robot is stalling so that there are no changes in
the sensor values at all. In Chap. 5 we will define a new objective function, which
introduces the desired drive for innovation in a most natural way.

Appendix 4.A Learning a Behavior from its Forward Model

Forward model learning, as introduced above, is a supervised learning task with the
target values of the next state being given, in the perspective of the model, from out-
side. In a typical supervised learning scenario, the model learns the prediction task
after a sufficiently long learning period with maximum precision. Still, in nearly all
practical cases, there is a residual error the quantity and quality of which depends
largely on the complexity of the predictor, the details of the learning process (an-
nealing strategies for the learning rate, to give an example), possible strategies for
avoiding overfitting, and the like. Given the learning process, the residual error re-
flects how well the model is able to represent the systematic features of the process.

The learning rule for learning the controller from a given model is obtained by
considering xt+1 as a target value given from outside and trying to get the behavior
(as described by the dynamics model) more in concordance with this value1. Thus,
the derivative w. r. t. any parameter p of the controller is taken as

1 In other words, the new state xt+1, is considered obscure despite our attempt to build a dynamical
model by our function ψ of the time step. This attitude is a little “fatalistic” and all we can do then
is to try to adapt our controller such that the dynamics model the true world match.
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∂
∂ p

ξ>ξ = 2ξ>
∂

∂ p
(xt+1−ψ (x)) =−2ξ>

∂
∂ p

ψ (x) . (4.10)

In the specific setting ψ (x) = Ag(Cx+h)+b, the parameters are the elements of C
and h.

Let us consider

1
2

∂
∂Ci j

E = ξ>
∂

∂Ci j
ψ(x) = ∑

k
ξk

∂
∂Ci j

ψk(x) = ∑
k

ξk
∂

∂Ci j
(Ag(z))k

= ∑
k

ξkAkl
∂

∂Ci j
gl (zl)

where g : Rm→ Rm and z ∈ Rm with z =Cx+h. Using that

∂
∂Ci j

gl (zl) = δilg′i (zi)x j

we find
1
2

∂
∂Ci j

E = ∑
k

ξkAkig′ix j = ηix j

where the vector η is
η = G′A>ξ

and G′ is the diagonal matrix with matrix elements G′rs = δrsg′r (zr). In matrix rep-
resentation we write the result as

1
2

∂
∂C

E = ηx> .

Correspondingly we obtain for the bias using

∂
∂hi

gl (zl) = δilg′i (zi)

that
1
2

∂
∂h

E = η .

With these results, the learning rules read

∆Ci j = εηix j (4.11)
∆hi = εηi . (4.12)

These are the rules, see Eqs. (4.7, 4.8) used in the main text. In the neural network
language, η = G′A>ξ is considered as the result of propagating the prediction error
ξt+1 back to the internal state of the neuron so that the rule has a Hebbian like
structure in the sense considered in Eq. (3.40).
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Appendix 4.B A Bootstrapping Scenario

In order to make bootstrapping of specific modes more explicit, let us consider the
case that xt is a periodic motion as for instance with the BARREL being tossed by
an external force. In the specific cases of the freely rolling BARREL, e. g. , the state
dynamics is even a harmonic oscillation described by

xt+1 = O(φ)xt (4.13)

with O(φ) a rotation matrix rotating the vector xt ∈ R2 by the angle φ .
In general, we may assume that the state vector essentially is following this law

plus perturbations due to the actions of the controller, nonlinearities, and several
physical effects. Whatever the true motion is, there will always be a misfit of the
model, which contains a component of the periodic motion (since it is present in
both xt+1 and its model representation Ayt , which contains the non-linearities), i.e.
we can write tentatively

ξt+1 = xt+1−Ayt ∝ O(φ)xt + . . . . (4.14)

Using this in Eq. (4.11) yields2

∆C ∝ O(φ)xtx>t + . . .

Consider, by way of example, a two-dimensional system with state vector xt ∝
(sinωt, cosωt)>. While the non-diagonal terms of the matrix xtx>t average out to
zero, the diagonal ones are always positive so that〈

xtx>t
〉

T
≈ 1

2
α2I+ . . .

where 〈. . .〉T means the averaging over a time window of length T � 1/ω and α is
proportional to the average amplitude of xt . We obtain

∆C ∝ O(φ)+ . . . . (4.15)

These crude considerations reveal an important tendency of the learning proce-
dure: if the state vector is rotating with a certain frequency, the update of the C
matrix is given by the corresponding rotation matrix so that, depending on the sign,
the latent oscillation is either enhanced or suppressed by the learning procedure. In
the former case, this is a bootstrapping of a specific oscillatory mode in the system.
Based on these considerations, it is not a surprise that in the case of the BARREL
the oscillatory modes are emerging if the robot is driven into a rolling motion by
external impacts.

2 We consider the case that A is proportional to the unit matrix and the g′ are close to 1 correspond-
ing to a weak excitation of the neurons.
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Actually, the situation is even more involved. On the one hand, the neglected
terms in Eq. (4.15) may dominate the periodic one and produce a more complicated
behavior than the simple rotation by the angle φ . In particular, with comparable
time scales of model and controller learning, the model can not follow fast enough
to become bias free and sufficiently accurate. This introduces spurious correlations
across time between the error ξ and the state x leading to additional updates for the
parameters C and h. Moreover, by the above arguments, the h dynamics is approxi-
mately

∆h = εO(φ)xt + . . . (4.16)

leading to a phase shifted oscillation of the bias, which influences strongly the dy-
namics of Eq. (4.13). Probably, these feedback effects are the reasons for the sweep-
ing phenomenon observed in Sect. 4.2.3 above, see also Experiment 4.2.

The arguments are rather crude but give an impression how latent oscillatory
modes may self-amplify by this homeostatic learning mechanism. As it turns out,
in practice the bootstrapping of stable modes is a common phenomenon in these
learning scenarios. The concrete mechanisms may vary but, as a general scheme,
the learning improves the agent’s ability to reenact the transition from the current
state xt to the next state xt+1 it has induced itself by its control action. The update
of the controller is done by means of the agent’s forward model, to the best of
its knowledge, so to say. The true transition dynamics may largely differ from the
predicted one but, as the above considerations have shown, as long as the model is
qualitatively right, it still reflects the physical response of the system which is all
the bootstrapping needs.

This is also an argument in favor of the simplicity of the models used in our
practical applications. Although only qualitatively right, the forward model may be
sufficiently helpful so that the controller is adapted into the right direction of getting
better in harmony with the responses by the physical system.
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A General Approach to Self-Organization —
Homeokinesis

Abstract: In this chapter we will introduce the concept of homeokinesis, formulate it in
mathematical terms, and develop a first understanding of its functionality. The preceding
chapter on homeostasis made clear that the objective of “keeping things under control” can-
not lead to a system which has a drive of its own to explore its behavioral options in a
self-determined manner. This is not surprising since the homeostatic objective drives the
controller to minimize the future effects of unpredictable perturbations. This chapter uses
a different objective, the so called time-loop error, derives learning rules by gradient de-
scending that error and discusses first consequences of the new approach. Minimizing the
time-loop error is shown to generate a dynamical entanglement between state and parameter
dynamics that has been termed homeokinesis since it realizes a dynamical regime jointly
involving the physical, the neural, and the synaptic dynamics of the brain-body system.

While homeostasis is seen as a general paradigm for the self-regulation towards
stability, homeokinesis is intended as its dynamical counterpart—a general principle
that drives agents to activity and innovation. Homeokinesis is realized as a super-
vised learning procedure, however with an objective that is completely internal to
the agent so that the brain-body system can be modeled by a self-referential dynam-
ical system. This chapter introduces first the new objective, the so-called time-loop
error (TLE) that was introduced originally as the basis of homeokinesis in [42]. In
Sect. 5.2 we will derive learning rules for the parameters of the controller and show
that these learning rules realize an irreducible entanglement between parameter and
state dynamics of the sensorimotor system. If the controller and the forward model
of the agent are realized by neural networks, this entanglement involves also the
synaptic dynamics of the neurons so that we have a system with fast synaptic plas-
ticity, the latter playing a constitutive role in the generation of the behavior. We call
such systems self-referential dynamical systems.

Section 5.3 represents, in the sense of a first study, key features of homeokinetic
systems. In Sect. 5.3.1 we give the general structure as a self-referential dynamical
system and describe in Sect. 5.3.2 one of their most essential properties: minimiz-
ing the TLE leads to a progressive destabilization of the system so that a general
drive for activity and innovation is emerging. Section 5.3.3 is devoted to the central
working mechanism of homeokinetic learning, the vivid interplay between state and
parameter dynamics.

75
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Sects. (5.3.4–5.3.6) describe subsequently further key features of homeokinesis
by demonstrating how the general trend for destabilization of the system is counter-
acted by the nonlinearities, the symmetries, and the evasive nature of true chaotic
behavior. The compromise between the conservative (or confining) effects and the
general drive for destabilization forms the basis for a behavioral variability that bal-
ances in complexity somewhere between order and chaos.

Further details together with an alternative derivation of the homeokinesis prin-
ciple may be found in Chap. 11 where we introduce the so-called interaction repre-
sentation. This new representation provides further theoretical insight into homeo-
kinetic systems. In particular, by extending the interaction representation to infinite
time horizons, we may understand homeokinesis as a flow of the global Lyapunov
exponents. This theoretical analysis reveals a direct connection to chaos theory,
which may be helpful for future research, given the wealth of results and knowl-
edge available there.

5.1 Homeokinesis — Introduction

We have discussed in Chap. 4 how self-regulation can be realized based completely
on the internal perspective of the agent. The idea was to make the agent control
its behavior by letting forward model and controller teach each other, solely driven
by the objective to keep the prediction error low. In the example of the BARREL
we observed the emergence of different control strategies generating specific, body
related behaviors. This principle is appealing because it brings the embodiment of
the robot into play in a natural way. In fact, since we do not give any specific goals or
external cues, it is the embodiment that decides where the system tends to develop.
In the experiment the controller drives the system into physical states which it can
stabilize best—in accordance with the principle since it is there where the prediction
error is minimized.

5.1.1 Time-Loop Error

However, in this way one does not get the curious and self-exploratory robot we
want to create. Instead of realizing a general stasis in the system we want brain,
body, and environment to get into a joint kinetic regime. So, instead of homeostasis
we want a homeokinetic system. The central question is now: how can we find a
general drive for activity? Or phrased differently: how can we get out of the stable
attractors? This would be simple if we could invert the arrow of time as indicated in
Fig. 5.1.

Of course, the physics of the system can surely not run backward in time. How-
ever, what we can do is to let the controller learn to stabilize the behavior backward
instead of forward in time as before. This means we must consider reconstruction
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(a) stabilizing dynamics (b) inverted time→ destabilizing

Fig. 5.1: Inversion of time converts stability into instability. (a) Schematic evolution of
a state and its perturbations in a stabilizing dynamics, approaching an attractor. (b) If the
arrow of time is inverted, the attractor is converted into a repeller and small perturbations
are amplified. In homeokinesis, a controller learns to stabilize a dynamics backward in
time. If applied to the real system (that is running forward in time), the controller aims at
destabilizing the dynamics.

(in time) instead of prediction and reiterate accordingly our earlier considerations.
Let us start from our general formulation of the sensorimotor dynamics as given by

xt+1 = ψ (xt)+ξt+1 . (5.1)

A single step in the sensorimotor dynamics can be considered as the transformation
of the input xt into the output xt+1, the systematic part of that transformation being
given by the dynamics model represented by the map ψ : Rn→Rn. The reconstruc-
tion of the true input xt from the observed output xt+1 by means of the dynamics
model corresponds to finding the input shift v that generates best the observed out-
put shift ξ , i.e. find vt so that

xt+1 = ψ (xt)+ξt+1 = ψ (xt + vt) . (5.2)

This is a nonlinear inverse problem that can be solved explicitly if the inverse ψ−1

of the function ψ exists so that the reconstructed sensor vector x̂t is

x̂t = xt + vt = ψ−1 (xt+1) . (5.3)

In the general case we define vt such that ‖xt+1−ψ (xt + vt)‖ is minimal1

‖xt+1−ψ (xt + vt)‖ != min (5.4)

with solution written as

vt = argmin
v
‖xt+1−ψ (xt + v)‖ . (5.5)

We call either vt itself or its square norm

E = v>t vt

1 This may have multiple solutions but we do not want to go into mathematical subtleties here.
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Fig. 5.2: Time loop and time-loop error. Starting at time t with sensor vector x, the
signal flow in the time loop runs through the controller and the world (robot) producing
the new sensor values at time t + 1, which are projected backward through the forward
model and the controller to yield the reconstructed sensor values x̂t (5.3). The difference
between reconstructed and true sensor values forms the time-loop error or reconstruction
error, which is used as a learning signal for the controller.

the reconstruction error. The sequence of steps from xt to xt+1 and back through the
dynamics model ψ to time t is forming a time loop so that E is also called the time-
loop error (TLE), see Fig. 5.2 for an illustration. The aim of homeokinetic learning
consists in changing the behavior so that the TLE is being minimized.

The mathematical definition (5.5) is too complicated for practical use. A simpli-
fication is obtained in a natural way if the prediction error (also called noise) ξ is
small so that we can use a Taylor expansion given by

ψ (x+ v) = ψ (x)+L(x)v+O
(
‖v‖2

)
where the Jacobian matrix L is given in terms of its matrix elements by

Li j (x) =
∂ψi (x)

∂x j

or more compactly

L(x) =
∂ψ (x)

∂x
. (5.6)

Assuming that the inverse L−1 exists, we obtain

v = L−1 (x)ξ +O
(
‖v‖2

)
. (5.7)

In Sect. 5.B (p. 100) we discuss a method for making the higher order terms to
disappear by replacing x in L(x) by a so called effective state. In this way we can
restrict ourselves to the lowest order term without loosing anything. In practice, the
effective states may be difficult to obtained so that we will restrict ourselves to use
the definition

v = L−1 (x)ξ (5.8)
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as the basis of our developments. Now, we can express the TLE explicitly as2

E = v>v = ξ>
1

LL>
ξ . (5.9)

The step from Eq. (5.5) to Eq. (5.8) may seem an oversimplification so that we
would ask the reader at this point to remember the goal of our project. We are look-
ing for a general principle that drives agents to activities in agreement with their
specific embodiment, thereby giving them a general scheme for self-exploration.
Taking the reconstruction error as the basis of that intent is just a guess (an educated
one, as we believe). We will see that this guess has far reaching consequences into
the desired direction even if we replace the original with a further guess, given by
the definition of Eq. (5.8). As we will discuss later, see in particular Chap. 11, the
use of the simplified form of the TLE corresponds to treating our system on the
basis of the local Lyapunov exponents3, which measure the stability of the system at
the level of a linear stability analysis. But this seems to be sufficient given that our
dynamics model, the map ψ , is rather crude anyway and that increasing the local
Lyapunov exponents is already all we need for getting the desired destabilization
necessary for a self-induced activity.

This is a good point to mention that, beside the time-loop error or the prediction
error, there are also other approaches to autonomous robot development. As men-
tioned in Chap. 1 one of the pioneering work first work was done by Schmidhuber
concerning artificial curiosity or intrinsic motivation in reinforcement learning. The
prediction error was used as a reward signal (large error is desired to learn new
things) in order to make the robot curious for new experiences [150] and further
developed in [151, 164]. Related ideas have been put forward in the so called play-
ground experiment by Kaplan and Oudeyer [85, 117], by using the learning progress
as a reward signal. Another idea is the Autotelic Principle proposed by Steels [157]
using the balance of skill and challenge of behavioral components as the motiva-
tion for open ended development. Several promising options are also provided by
information theory as discussed in [135] with its relation to embodiment. Prelimi-
nary work has shown a great similarity between using the time-loop error and the
maximization of the so called predictive information of the sensor data, see for in-
stance [9, 10, 40, 191].

2 We write the inverse of a matrix M as 1
M .

3 The local Lyapunov exponents λi of a dynamics described by the map ψ are related by 2λi = lnρi
to the eigenvalues ρi of LL>. The (local) Lyapunov exponents of the sensorimotor loop (described
by its model ψ) are negative for a stabilizing and positive for a destabilizing dynamics (in the di-
rection of the respective eigenvector). The global Lyapunov exponents and their relation to homeo-
kinetic learning is introduced in Chap. 11.
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5.1.2 Discussion

Equation (5.9) already contains the main features of homeokinesis in a nutshell.
Coarsely speaking, the TLE is small if, on the one hand, the prediction error ξ is
small and, on the other hand, the eigenvalues of LL> are large (the matrix is in the
denominator). The former condition means that the behavior of the system is well
predictable, i. e. the system behaves in a more or less systematic way and is stable
against perturbations. The second condition is best understood by noting that the
eigenvalues of LL> measure the local stability of the system against perturbations.
Thus, the TLE is small if the eigenvalues are large meaning that the dynamics is
destabilized.

The resulting behavior is a compromise between predictability (keeping things
under control) and chaoticity (trying new solutions due to the inherent instability)
and it will be seen that this compromise creates a high behavioral variety which is
body related and adapted to the environment.

5.1.3 Standard Setting

In most applications it has proven sufficient to use a rather simple setting for both the
forward model and the controller. This is (i) possible because of the strong interplay
between state and parameter dynamics, the main effect of homeokinetic learning,
that replaces complex internal states of the controller; and this is (ii) desirable since
it allows the externalization of complexity (see Chap. 3) to the physics of the robot in
its environment. These points will be elucidated in detail in the later developments.

In our standard setting we use a one-layer neural network for the controller K :
Rn→ Rm given by

K (x) = g(Cx+h)

with the m× n synaptic matrix C, the bias vector h ∈ Rm, and the activation func-
tion g : Rm → Rm. In most applications g is realized by the tanh function (taken
componentwise) introduced in Eq. 3.33 (p. 51). With the forward model providing
a prediction as

xpred
t+1 = Ayt +b (5.10)

the dynamics model of the loop, the map ψ : Rm→ Rm, is

ψ (x) = Ag(Cx+h)+b (5.11)

as already discussed in Sect. 3.3 and in Chap. 4, see Eqs. (4.2, 4.3). The Jacobian
matrix, see Eq. (5.6), is now explicitly obtained as

L(x) = AG′ (z)C (5.12)
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where G′ (z) is the diagonal matrix defined as G′i j = δi jg′ (zi) = δi jg′i (z) with the
Kronecker delta δi j and

z =Cx+h

may be interpreted as the vector of the membrane potentials of the motor neurons.
The learning of the forward model remains as given by Eqs. (4.5, 4.6), further details
can be found in Chap. 9.

5.1.4 Landscape of the Time-Loop Error

Homeokinetic learning is realized as a gradient descent on the TLE. Some essen-
tial features of homeokinesis can already be seen by considering the landscape of
the TLE in a simple example related to the one-dimensional system analyzed in
Sect. 3.3. As a concrete realization we take our TWOWHEELED (see Sect. 3.3.5),
give both wheels the same motor command so that the robot can drive only straight,
and control the wheels with a single motor neuron. Let us consider the system with-
out bias h for a moment. As we know from Sect. 3.3.2 (p. 36) this is a dynamical
system with a pitchfork bifurcation at a critical value for the (only) parameter C.

The landscape of the time-loop error is characterized by singularities acting as
repeller (infinitely repulsive regions) for the gradient flow, see Fig. 5.3. These repul-
sive regions are easily identified. In the one-dimensional case, all matrices featuring

Fig. 5.3: Sketching the landscape of the time-loop error E. The landscape of a 1D
system is structured by the singularities of E resulting from the zeros of the 1×1 Jacobian
matrix L = Ag′C. The singularities act as repeller for the gradient flow of homeokinetic
learning. The working regime is surrounded by singularities defined by g′ = 0 (outer right,
C→ ∞) and by C = 0 corresponding, respectively, to the saturation region of the neuron
(minimal sensitivity) and the “do nothing” behavior of the robot. It was assumed that A= 1
is the correct value for the model matrix producing another repeller by the divergence of
the prediction error ξ 2 if A→ ∞. The “dark side” region is reached when starting the
gradient flow in the corresponding basin. As explained in the text, this side corresponds
to a behavior of the robot leading potentially to self-destruction in the course of learning.
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in the Jacobian matrix are 1×1 so that they are treated as scalars. The repellers are
given simply by the zeros of L, i. e. by the zeros of A, C, and g′. The latter term is
small in the saturation region of the motor neuron so that the TLE has a repeller
there. As a consequence, the gradient flow will drive the system away from the sat-
uration. This is in accordance with the expected sensitization since in the saturation
region the neuron is insensitive to its inputs.

A second repeller is situated at A = 0. That one will be considered in detail in
Chap. 9 so that we will not discuss it here.

A third repulsive region is given by C = 0. The role of that singularity is most
immediately seen if the robot is initialized in the tabula rasa situation (C = 0) so
that the controller does not react to its sensor values at all. This is the “do nothing”
behavior (the robot stalls). However, now C = 0 is an instable fixed point for the
gradient flow (due to the singularity) so that the slightest perturbation will quickly
drive the parameters of the controller away from this “do nothing” region towards
activity.

As Fig. 5.3 shows that, sandwiched between these two repelling regions, there
is an attractive region, which we call the working regime since it is there where the
robot is active with a high degree of sensitivity against the feedback from its body
and the interactions with the environment. This point is illustrated by an experiment
in Sect. 5.2.3 further below, a detailed analysis being given in Sect. 6.1 (p. 108).

Figure 5.3 also shows that, beside the “sound” region to the right hand side of
the “do nothing” singularity, there is another region, called the “dark side.” When
initializing the robot in that region, the gradient flow will drive the system further
down with C values becoming more and more negative. What does this mean for
the robot behavior? In the present setting, with negative C values a positive sensor
value (robot driving forward) is converted to a negative motor command, requiring
the robot to drive backward and vice versa. This sign inversion pressure, encoun-
tered in each time step (e. g. 50 times per second), becomes the stronger the more
negative C so that the motors or mechanical parts of the robot may become over-
loaded and break down eventually. This is why we call it the region of (potential)
self-destruction. You may wish to test this phenomenon by doing Experiment 5.1.

Avoiding the “dark side” region is a question of an appropriate initialization,
which turns out to be not too demanding in practice, see our cooking recipe in
Sect. 15.2. Nevertheless, in high dimensional systems there are scenarios so that
the system can switch to the wrong side, which often needs a restart for remedy.

The discussion of the landscape could easily be generalized to the multidimen-
sional case by associating the zeros of L with the null spaces of the respective ma-
trices C, A, and G′. Many more details on the landscape of the TLE will be revealed
by both theoretical analysis and concrete examples in the following chapters.
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5.2 Homeokinetic Learning

In the preceding Chap. 4 we have seen that minimal prediction errors are achieved
best by a “do nothing” behavior. As discussed above, with the new objective there is
an additional drive rendering the “do nothing” option instable. In the generic case,
learning of the controller is realized by gradient descending the TLE E defined in
Eq. 5.9 (p. 79). Writing ∆ pt = pt+1− pt for any parameter pt ∈R1 the learning step
is obtained as (dropping time indices)

∆ p =−εc
∂E
∂ p

(5.13)

with εc being the learning rate defining the width of the gradient step. Although
this looks formally equivalent to common learning scenarios, it will become clear
in the following that there are many novel features. Most prominently, the objective
E is not given from outside but is a function of the state dynamics of the system
alone and is therefore totally intrinsic to the agent. Moreover, state and parameter
dynamics run simultaneously, there is no freezing or the like of the learning rate in
order to get a convergence towards a behavioral goal. To the contrary, the parameter
dynamics defined by Eq. (5.13) can be interpreted as the internal state dynamics
in the sense of Eqs. (3.4, 3.5). This increases the complexity of the actually very
simple controller structures we are using in the applications.

Let us consider the very general setting of a sensorimotor loop with a map ψ
representing the systematic part of the dynamics. The map consists of the controller,
mapping sensor states xt to motor values yt , and a forward model that predicts the
next sensor state xt+1 on the basis of xt and yt as explained in detail in Sect. 3.1.2.
The TLE depends explicitly, via L, on the parameters of the controller so that we
can give generally valid expressions in terms of the derivatives of L. The derivation
of the learning rules is simplified if we write the general expression of the TLE,
see Eqs. (5.8, 5.9), as the overlap between the prediction error ξ and an auxiliary
vector χ as4

E = χ>ξ (5.14)

where
χ =

1
L>

v, v =
1
L

ξ . (5.15)

Note that ξ is at time t + 1 all other quantities carrying time index t. To cope with
singularities the inverses are understood as pseudoinverses, see Sect. 5.G. Let us
concentrate in the following on the explicit dependence of E on the parameters
via the Jacobian matrix L. Possible dependencies of ξ on the parameters p will be
included later.

4 Use that a>Mb = q>b with q = M>a.
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5.2.1 Canonical Learning Rule

The gradient step is given in terms of the derivative of the Jacobian matrix w. r. t. any
parameter p of the controller as, see Sect. 5.E (p. 103) for details,

∆ p = εcχ>
∂L
∂ p

v , (5.16)

(dropping time indices). This is the central rule for the parameter dynamics
generating the self-determined development of robot behaviors.

The derivation of the rule is straightforward for the case that the matrix L is
regular. A simple trick to avoid singularities would be to add a very small random
matrix to L. This preserves the structure of the rule and shows that the singularities
show up only in the vectors χ and v. Otherwise, one may use pseudoinverses, see
Sect. 5.G or generalizations thereof as introduced in Sect. 15.4.

The general learning rule can be rewritten in many different forms that will be
helpful in further developments. Equation (5.16) is written in a more symmetric
fashion as

∆ p = εcχ>
∂Q
∂ p

χ (5.17)

where
Q = LL> and χ = Q−1ξ .

Introducing a matrix scalar product between any two matrices A and B as

〈A,B〉= Tr
(

A>B
)
= ∑

i j
Ai jBi j (5.18)

we may also write the learning rule as

∆ p =−εc

〈
∂E
∂L

,
∂L
∂ p

〉
(5.19)

where
∂E
∂L

=−2χv> (5.20)

is called the primary gradient. This gradient drives L directly (without taking its
parameter dependence into account) by ∆L =−εc

∂E
∂L = 2εcχv> showing explicitly

the role of χ and v in the full update step. Equation (5.19) defines the update step as
the overlap between two matrices, the primary gradient and the parameter dependent
term ∂L

∂ p that will be discussed in the next section.
Equations (5.16) and (5.19) express quite clearly the essentials of the homeo-

kinetic learning approach at a formal level. The parameter dynamics that changes
the behavior of the agent is depending on (i) the driving term (5.20) containing the
primary gradient of E that augments sensitivity and with it the amplification of per-
turbations in the physical system; and (ii) on the derivative ∂L/∂ p, which is related
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to the dynamical properties of the agent, in particular to the nonlinearities of both
controller and forward model. It is this term that introduces the confinement against
the unrestricted growth of the local Lyapunov exponents and that is responsible for
the tight coupling between the state and the parameter dynamics, i. e. between the
external and the internal world of the brain-body system including the synaptic level
(parameter dynamics).

5.2.2 Explicit Learning Rules

Let us now consider the special case of our standard setting as defined in Sect. 5.1.3
with the Jacobian matrix given by Eq. (5.12). In order to formulate the learning
rules, we introduce the auxiliary vectors ζ and µ defined as

µ = G′A>χ , ζ =Cv (5.21)

with the vectors χ and v given in Eq. (5.15). The learning rules as derived in Sect. 5.F
are

∆Ci j = εcµiv j− εiyix j (5.22)
∆hi =−εiyi (5.23)

where
y = g(z) = g(Cx+h)

(with y ∈ Rm and z ∈ Rm) is the output vector of the controller and εc > 0 its
overall learning rate. Indices are running over the m motors and the n sensors as
i = 1,2, . . . ,m and j = 1,2, . . . ,n. In practice it is sometimes appropriate to intro-
duce additional damping terms into the rule. Remember, that all quantities carry
time index t although v and χ depend on ξt+1 (5.15).

We introduced the channel specific learning rates

εi = 2αεcµiζi . (5.24)

valid for the tanh activation function, for the general case see Sect. 15.C. We intro-
duced in the derivation given in Sect. 5.F (p. 104) the empirical factor α (default
value 1) that is called sense in our algorithms, see for instance the sox algorithm
in Sect. 15.1. By means of α one can define the sensitivity of the robot against varia-
tions in the sensor values. In particular, by choosing α one can drive the system into
a desired working regime like the one given by the effective bifurcation point. De-
tails may be found in Sect. 6.2 (p. 108), hints for the best choice of α can be found
in different applications later in the book. However, in most applications we use the
default value α = 1 so that we may renounce from a more detailed discussion here.

In a more compact notation, we may write these rules also as
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∆C = εcµv>−εyx> (5.25)
∆h =−εy (5.26)

the diagonal matrix ε containing the channel depending learning rates given by

εi j = δi jεi (5.27)

with the Kronecker delta δi j.
With the regularization procedures given in Sects. 5.G and 15.4, these learning

rules are valid for any combination of n sensors with m motors. The rules form a
concrete example of homeokinetic learning and will be applied in this form (with
some modifications) to a large number of different robotic systems. Note that the
learning rates are not annealed or kept small in order to enforce convergence. In-
stead, the deeper sense of homeokinetic learning is in the vivid interplay between
the system and the parameter dynamics, both running on comparable time scales.

In Sect. 5.C (p. 101) we provide further expressions of the learning rules derived
for the case that the gradient is averaged over the noise.

5.2.3 Self-Actualization, Adaptivity, and Sensitivity — Example

Let us consider as a first illustration the behavior of the TWOWHEELED as in-
troduced in Sect. 5.1.4 with homeokinetic learning. Let us use the learning rule
Eq. (5.22) for driving the parameter C, initialize C with a subcritical value so that
the robot is stalling, stabilizing itself against small fluctuations in the sensor value
(the wheel velocity). As seen in Fig. 5.4 or by doing Experiment 5.1, the learning
dynamics is rapidly increasing the value of C. When exceeding its critical value, the
robot starts to move into one of its possible directions since the parameter is driven
towards a region of the then bistable system where the robot is taking decisions,
driving either forward or backward (both directions are equally probable so that we
actually observe an example of spontaneous symmetry breaking). We may interpret
this initial phase as a self-regulation towards activity, calling it (sloppily) a kind of
self-actualization.

The interesting situation happens if the robot collides with the wall where it is
seen to invert velocity immediately. This rapid switching between the two fixed
points of the sensorimotor dynamics is a result of the physical properties. The robot
undergoes an elastic collision so that it is reflected from the wall with the effect that
the wheels are also inverting their velocity, due to friction effects, at least partly, see
also Fig. 3.6.

By this heavy perturbation, the bistable system is being switched, the robot driv-
ing to the other wall where the switching repeats. As Fig. 5.4 shows, this work-
ing regime of the robot is stable and would last forever, if the conditions were not
changed. This specific working regime the robot has self-regulated into is charac-
terized by its ability to take decisions, still remaining sufficiently sensitive to revert
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Fig. 5.4: Self-actualization and adaptation by homeokinetic learning. Experiment
with TWOWHEELED with connected wheels (1 DOF). (a) Evolution of the controller pa-
rameter C. (b) Sensor values x and motor values y over time. After 80 sec the trailer was
attached (dashed lines). The robot comes to a rest temporarily but progressively increases
its sensitivity until it recovers back to the unloaded behavior. After removing the trailer
at time 120 sec the system self-regulates by the homeokinetic learning back to the unper-
turbed situation very rapidly. Settings: εc = 1,εA = 0.25.

decisions if perturbed by interactions with the environment or by changing physical
responses of the body.

What happens if the physical properties of the system change suddenly. We
model such a situation by attaching a trailer to the robot so that there is a higher
friction. As the experiment shows, the sudden additional load has the expected re-
sult of lowering the effective feedback in the sensorimotor loop so that the robot
stalls again. However, the learning dynamics quite rapidly increases the value of C
so that after some time the robot recovers and the original motion pattern is reestab-
lished also in the new physical situation. Moreover, after removing the trailer, the

Video 5.1: Sensitivity and adaptation to environmental changes. The robot starts with
a unit initialization, such that it moves only slowly. After a short time the feedback strength
has risen sufficiently such that the robot starts moving steadily forward and backward,
bouncing at the walls. Then a heavy trailer is connected to the robot. Initially the robot
hardly moves anymore, but the feedback strength is adapted so that stronger and stronger
actions are performed, see Fig. 5.4. Settings: εc = 1,εA = 0.25. The video can be watched
at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:HK:wheeled:trailer
http://playfulmachines.com/videos.html#vid:HK:wheeled:trailer
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Experiment 5.1: Sensitivity and adaptation to environmental changes.
Start the simulation Wheeled robot (1D-case) with trailer. At the beginning there are no obstacles except the walls of
the arena. Watch how, after initialization, the robot just fluctuates until the critical value of the feedback strength is
reached when the robot starts driving into one direction, eventually bouncing at the wall. Note that the h dynamics
is disabled. If the robot is away from the walls press b to add a trailer box, which is connected automatically to
the robot. Observe how the actions become more and more committed until the behavior without the trailer is being
reestablished. You may remove the trailer with B. Use the GUILOGGER to watch evolution of the sensor values, motor
values and parameter dynamics of C, and A. You can change the friction of the trailer with the ground by adjusting
the parameter friction (default=1.8). To reproduce the parameter divergence on the “dark side” you can set C to a
negative value by for instance coupling=-0.5.

learning dynamics very rapidly self-regulates the system back to the original work-
ing regime. This demonstrates the high degree of adaptivity realized by the homeo-
kinetic learning dynamics.

5.2.4 The Homeokinetic BARREL

Before going to discuss the specific properties of the homeokinetic learning rules in
detail by both theoretical analysis and practical applications, let us consider a second
experiment using the BARREL in order to demonstrate the essential difference to the
homeostatic learning considered in Chap. 4, in particular Sect. 4.2.3 (p. 68).

The BARREL, as introduced in Sect. 3.2 and already studied in Sect. 4.2.1, has
two motors shifting the internal weights and two sensors measuring the inclination
of the internal axes. Hence we put m = n = 2 in the above Eqs. (5.22, 5.23) and
determine the learning rates empirically to make learning sufficiently fast. When
connecting the homeokinetic “brain” to the robot the controller can be initialized
such that it stabilizes the robot in a resting position. Then, if the learning is switched
on, the feedback strength in the loop is steadily increasing so that the ensuing noise
amplification effect creates a kind of restlessness of the robot and after a few seconds
it starts rolling. Depending on the initial condition (and the prediction error/noise)
the robot develops different motion patterns, in most cases it enters the sweeping
mode, which we already observed in the homeostatic setting (Sect. 4.2.3).

The observed destabilization of the stalling mode, clearly demonstrated by
Video 5.2, is the novel and important property, which makes the system much richer
in the spectrum of behaviors. In the experiments one observes a lot of further ac-
tive modes beside the sweeping mode. Many of them are long lived transients but
sometimes changing between modes must be helped by either re-initializing the pa-
rameters or by shaking the robot by external force (see Experiment 7.2). By the
mechanical influences one may provoke a drastic change of parameters, as one can
observe in the parameter inlets of Video 5.2. It is interesting to see how the sys-
tem reorganizes in a few seconds or minutes into a new active, seemingly organized
mode of behavior.

The behavior of the BARREL, in particular the sweeping mode, will be discussed
in more detail in Sect. 7.3.3. Beside rolling, the BARREL will be seen in different
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Video 5.2: Destabilization and Emergence. Behavior of the BARREL when starting in
a situation where the center of gravity of the BARREL is very low so that the situation is
physically stable. The homeokinetic learning is seen to destabilize the system quite rapidly
(a few seconds real time), getting the BARREL into moving. The parameter dynamics of
both the forward model and the controller can be followed in the panels at the left and
right upper corners, respectively. The panels depict the course of the parameters in a time
window of 250 steps corresponding to about 10 sec. After some time stable rolling patterns
are emerging. Later on (at time 01 : 05) the BARREL was stopped by applying a physical
force to it (note the red dot that pulls the robot). After releasing the BARREL, the system
recovers again in a very short time and resumes the rolling patterns in a slightly modified
form. The video can be watched at http://playfulmachines.com.

experiments to produce many other interesting modes. Rolling is the most natural
behavior for a barrel when lying on a surface so that obtaining these behaviors is
quite “cheap.” As we will see in Sect. 8.5 homeokinetic learning is always good for
a surprise. In fact we will see there quite unexpected behaviors that disclose a certain
amount of creativity of the system in impasse situations. This result is not excep-
tional. In fact in many of the experiments provided in the following chapters, the
emergence of surprising, though body related and seemingly meaningful behaviors
can be observed.

5.3 Key Features of Homeokinesis

The interplay between state and parameter dynamics introduced by homeokinetic
learning, see Eq. (5.16), is determined by the concrete realization, predominantly
by the structure and the specific parametrization, of the brain-body system. As it
will be seen by the numerous experiments to be presented in the later chapters of
this book, there is an overwhelming variety of dynamical patterns emerging from
this interplay. Nevertheless, one can see the basic features already at a rather for-
mal level. We are going now to outline the most salient characteristics of the new
learning paradigm. The discussions given in the following partly anticipate results
of specific examples treated later, in particular in Chap. 6 and Chap. 7, so that they
can be skimmed over and reread later.

http://playfulmachines.com/videos.html#vid:outline:Videooutofstability
http://playfulmachines.com/videos.html#vid:outline:Videooutofstability
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5.3.1 Homeokinesis as a Self-Referential Dynamical System

Let us start with qualifying more explicitly the structure of the combined system
of state and parameter dynamics. Complementing the state dynamics as given by
Eq. (5.1) with the gradient rule yields quite generally the complete dynamics of our
brain-body system as

xt+1 = ψ (xt , pt)+ξt+1 (5.28)
pt+1 = Γ (xt , pt) (5.29)

where Γ is defined in terms of the gradient on the error landscape as

Γ (x, p) = p− εc
∂E (x, p)

∂ p
. (5.30)

This expression emphasizes the direct connection between state and parameter
dynamics. We may relate it to the general definition of a controller given by
Eqs. (3.4, 3.5) in Sect. 3.1. Noting that ψ (x) = M (x,y) = M (x,K (x)) and com-
paring Eq. (5.29) with Eq. (3.4), we may interpret the parameter vector p (that is
implicit in K) as the internal state of the controller and the gradient descent on the
TLE as the generating rule for the internal state dynamics.

Whatever the interpretation of the parameter dynamics is, Eqs. (5.28, 5.29) rep-
resent an adaptive system, the adaptation being driven by a gradient descent on the
objective function E. In the conventional supervised learning setting, the objective
is given from outside, E measuring the distance to some predefined learning goal, so
that the adaptation means lowering the distance between current and goal behavior.
In our case, the objective function E is entirely internal to the agent. In fact, E is a
function of the state vector (and the prediction error) since its structure is defined
by the Jacobian matrix of the dynamical map ψ . The latter is kept up to date by a
simultaneous learning process.

Considering Eq. (5.28) alone, the state dynamics is seen as a dynamical system
with parameters p. Dynamical systems theory, in particular the theory of bifurca-
tions, studies the properties of the dynamical system under changes of the param-
eters. We have given (and will give) examples of bifurcation scenarios in Chap. 3,
Chap. 6, and Chap. 7. The new feature introduced by Eq. (5.29) is a dynamical rule
that changes the parameters as a function of the state itself. In a sense, the state
dynamics starts a self-investigation of its behavior driven by a self-induced varia-
tion of its parameters. Once the structure of the objective function E is given, the
state dynamics changes its parameters completely autonomously. We call systems
of the above kind (Eqs. (5.28–5.30)) that are equipped with a self-driven param-
eter dynamics self-referential dynamical systems since they do everything only in
reference to themselves.
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5.3.2 Sensitization — The Driving Force of Homeokinesis

A key feature of homeokinetic learning can be already obtained at this level of our
approach by considering the dependence of the TLE E in Eq. (5.9) on the Jacobian
matrix L, ignoring the concrete dependence of the latter on the parameters of the
controller for a while. The specific expression for the TLE is analyzed effectively
by means of matrix polar decomposition, putting L = WU where U> = U−1 and
W is symmetric. Then, LL> = W 2 is symmetric with positive eigenvalues, assum-
ing L is regular. Writing the eigenvalues as e2λi , we may identify the λi as the local
Lyapunov exponents that quantify the stability of the system in the direction of the
respective eigenvector over one time step. In fact (assuming all eigenvalues different
for simplicity), over one time step, the separation between two neighboring trajec-
tories expanding if λi > 0 and contracting if λi < 0. Using

(
LL>

)−1
=W−2 we get

E = ∑e−2λi ξ̂ 2
i

where ξ̂i is the projection of ξ onto the eigenvector of λi. With nonzero noise in all
channels, E is minimal if the local Lyapunov exponents λi→ ∞ for all i.

Gradient descending the error w. r. t. L would lead to the total destabilization of
the system so that we must not consider the system without the confining effects
caused by the potential nonlinearities in the dependence of L on its parameters. In
order to get an explicit result, we can mimic this effect by adding some penalty term
to the error E, for instance we may use the Frobenius norm of the matrix L so that

E = ξ>
1

LL>
ξ + γTr

(
L>L

)
(5.31)

= ∑

(
e−2λi ξ̂ 2

i + γe2λi
)
.

All terms are positive and independent so that the sum is minimal if each individual
term is minimal, which is at

2λi = ln
√

ξ̂ 2
i /γ (5.32)

for all i. In the frame of reference spanned by the eigenvectors, each eigenvalue
defines the feedback strength in the sensorimotor loop in the respective dimension
and thus is a measure for the sensitivity (the degree of noise amplification) in that
dimension. Hence, with i. i. d. noise this result demonstrates that the minimization
of the TLE leads to the equilibration of all modes of the system at the maximum
level of sensitivity.

Equation (5.32) also shows that, if the noise strengths differ across channels, the
destabilization by noise amplification is more effective in those dimensions where
the prediction error ξ is high. Noise amplification is, in this setting, responsible
for the explorative nature of the system so that exploration is being more enhanced
the noisier the channel. The actual flavor of the method, however, develops only if
we include the nonlinearities directly. This complicates the whole analysis so that
we will start with the elementary sensorimotor loop of the one-dimensional case in
Chap. 6.
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5.3.3 State-Parameter Interplay

The crucial point of homeokinetic learning is the interplay between the learning
dynamics (the gradient descent on the TLE) and the state dynamics. As seen in
Sect. 5.3.2, the learning dynamics tries to destabilize the state dynamics as much
as possible, increasing thereby the sensitivity of the system against external pertur-
bations. This tendency would drive the system into chaos. This unrestricted growth
of the sensitivity is counteracted by the nonlinearities of the system, introduced for
instance by the saturation of the neurons in the simple cases considered explicitly in
Chap. 3 and Sect. 5.2.2.

The two tendencies can be read off directly from the homeokinetic objective, as
given by the TLE in the form of Eq. (5.19), the factors of the scalar product repre-
senting the two opposing tendencies: while the first factor, the primary gradient, is
aiming at increasing the sensitivity, the second factor containing the derivatives of
L is causing the confinement effect by the nonlinearities. In a similar way, the two
tendencies can also be recognized in the learning rules, see Eq. (5.22), correspond-
ing to the concrete parametrization given by Eq. (5.11). Here, the update is given by
the sum of two terms, the first one driving the sensitivity whereas the confinement
is realized by the second term.

It is important to note that the confinement effect depends on the concrete
parametrization of the system in a crucial and intricate way—with a different
parametrization the self-referential system (state-parameter dynamics) will develop
vastly different behaviors. Despite this variety, there are two fundamental scenarios
for the interplay between state and parameter dynamics that can easily be identified.
The first scenario may be called the fast-slow regime discussed in the following sec-
tion and the second one is the entanglement regime introduced in the subsequent
section.

5.3.3.1 The Fast-Slow Regime

The role of the parametrization can be read off from the bifurcation diagram for the
system. The first case we consider corresponds to a system with fixed point attractors
and a bifurcation scenario characterized by bifurcation points with maximum insta-
bility of the state dynamics. A generic example is the pitchfork bifurcation treated
in Sect. 3.3.2 (p. 36). Right at the bifurcation point of the pitchfork bifurcation the
stability is minimal so that the gradient descent will drive the parameters towards
that point as illustrated by Fig. 5.5.

The speed of the parameter dynamics is regulated by the learning rate εc. If that
one is not taken too large5, the state dynamics may still be faster than the parameter
one so that there is a separation of time scales emerging in this specific situation. On
the slow time scale the parameters change but before there is a substantial change,

5 Remember that an essential feature of homeokinesis is that the learning rate is being kept at a
fixed value, usually quite large.
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Fig. 5.5: Key features of homeokinesis — the fast-slow regime. If the original system
(without learning) has a point of maximum sensitivity like the bifurcation point of a pitch-
fork bifurcation (inset), the gradient descent on the time-loop error is driving the system
to that point. Case of infinitesimal noise corresponding to the limit of very large values
for the α parameter in the learning rule.

the state is already more or less converged to the current fixed point. In this so called
fast-slow regime the combined dynamics given by Eqs. (5.28, 5.29) is obviously
characterized by a dominance of the parameter dynamics over the state dynamics.

These considerations are valid as long as the noise (the prediction error) is in-
finitesimally small. In the realistic situation with finite noise, as shown in Sect. 6.2.2,
the system is driven towards the effective bifurcation point – the point of maximum
sensitivity in a noisy, bistable system. In the concrete learning rules, see Eqs. (5.22,
5.23), this is achieved by choosing the sense parameter α appropriately.

Systems with different time scales play an essential role in the theory of syner-
getics [60, 61, 63] where the elimination of fast variables and the so called slaving
principle are key features. In that terminology one might say that the parameter
dynamics is slaving the system dynamics in this specific regime.

From the more mathematical point of view there is a body of literature on the
identification of the so called slow and fast manifolds. This is the topic of geo-
metric singular perturbation theory, which has been put forward mainly by Neil
Fenichel [51]. The present dynamical regime could be formulated in terms of that
theory in more mathematical terms but this must be left to future work.

5.3.3.2 Entanglement of State and Parameter Dynamics

While the fast-slow regime is exemplified by the pitchfork bifurcation system, the
regime to be considered now is typical for the hysteresis system considered in
Sect. 3.4 (p. 45) with catastrophic bifurcation points. In the hysteresis regime (with
fixed, positive feedback strength, i. e. R > 1), the bifurcation diagram is character-
ized by a saddle-node or catastrophic bifurcation. Let us consider here the case that
the hysteresis parameter h is the only parameter driven by the learning rule. The
corresponding bifurcation diagram is depicted in Fig. 5.6, which suggests the fol-
lowing scenario. When on or close to one of the stable branches, the destabilization
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Fig. 5.6: Key features of homeokinesis — entanglement. The interplay between param-
eter and state dynamics in a hysteresis system with R = 1.2 (finite noise case). In (a) the
normalized time-loop error E/ξ 2 is depicted as a function of the hysteresis parameter h.
Starting in a situation A, the gradient descent drives h towards regions of less stability
until in situation B the fixed point disappears altogether, see also Figure (b). In B, the
parameter dynamics looses control over the state dynamics and the state jumps back to a
fixed point of higher stability. There, the scenario restarts. The essential difference to the
fast-slow regime, see Fig. 5.5, consists in the fact that there is no convergence, the state
and parameter dynamics entertaining instead a persistent oscillatory pattern. See the text
for more details and references to the relevant content of later sections.

effect drives the parameter towards the catastrophic bifurcation point (essentially in
accordance with the fast-slow regime discussed above). There the system dynamics
loses stability and jumps to the other branch, where the scenario restarts6.

In this way, there is no convergence to any definite fixed point and/or an emerg-
ing separation of time scales. Instead, this entanglement regime corresponds to a
mixing of time scales and is characterized by the competition between an ongoing
destabilization (by the parameter dynamics) with increasing resistance of the state
dynamics and its eventual breaking out by jumping to another regime that is more
stable. This may happen if (i) either the destabilization destroys an attractor the
system was in before, see Fig. 5.6 and Fig. 5.7 for a more detailed picture of the
error evolution; or (ii) if the parameter dynamics looses its influence on the system
dynamics because the latter is getting more and more complex due to the destabi-
lization process. This jumping effect leads to oscillatory patterns with frequencies
depending on the learning rate ε in a definite way.

This regime is characterized by the fact that the TLE never converges but keeps
oscillating with large jumps if the system “breaks out” from getting more and more
instable. The entanglement scenario is controlled by the learning rate ε and is break-
ing down completely if the parameter dynamics is switched off (ε = 0). We will give
in the following chapters numerous examples demonstrating how the involvement
of the parameter dynamics is constitutive for the behavior.

6 The situation with both R and h as parameters is analyzed in detail in Sect. 6.3 (p. 112) and is
seen to reproduce the one parameter case once R has self-regulated into the hysteresis regime.
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Fig. 5.7: Time-loop error and hysteresis oscillation. In a hysteresis oscillation, see
Fig. 5.6, the time-loop error is not converging. When in the limit cycle, the error decays
as long as the dynamics is essentially a fixed point flow so that the combined dynamics
is dominated by the gradient descent in the parameter space. The jumps to higher error
values occur if the current fixed point is destroyed and the state jumps to the other fixed
point. These jumps against the error minimization tendencies are a consequence of the
hysteresis properties of the sensorimotor loop and may generally occur in systems with
catastrophic bifurcations. The figure depicts the behavior of the time-loop error E, the
state x and the hysteresis parameter h. The value of the learning rate is ε = 0.001, the
fixed value of C = 1.2 and the initial conditions are x0 = 0.8, h0 = 0.1. Details may be
found in Sect. 6.3 (p. 112).

This specific feature is dominating the behavior for the high dimensional systems
considered in Chap. 10 where the combined dynamics is a dynamical system of
several hundred dimensions.

5.3.4 Temperature Effect

The TLE depends in a complicated way on the state x of the system, the param-
eters p of the controller, and the prediction error (noise) ξ . Seen as a landscape
over the parameters of the controller alone, the error landscape is fluctuating due
to the dynamics of the noise and the state itself. The fluctuations due to the state
dynamics are very different in nature and strength. It can be shown analytically that
a dynamics which is invariant against special symmetry operations will leave the
landscape more or less invariant, see next section and Fig. 5.8. These specific dy-
namical patterns correspond to large plateaus of the landscape, mostly minima, and
are therefore preferred in the development of the system. We will encounter many
examples for that scenario.

The fluctuations due to the noise are of a different nature; they are driven most
often directly by a large prediction error ξ due to a collision or other unpredictable
perturbations, see for instance the example of a robot colliding with a wall as in
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Fig. 3.6. The fluctuations of the error may cover one or two orders of magnitude in
the different situations.

The picture of a fluctuating error landscape with some calm regions of favorite
behaviors is helpful in understanding the behaviors observed in the experiments.
Stipulating that in the large error regions with strong fluctuations gradients are
rather large and of high directional variance, one may view the gradient flow on the
TLE landscape more like a diffusion on a surface with fluctuations corresponding
to widely varying temperatures, hot regions being left more rapidly in favor of the
more calm or cooler ones where the system may settle down in a kind of dynamical
equilibrium.

In our high-dimensional systems with several hundred parameters, we have made
the astonishing observation that the picture is relevant and can be used to understand
the emergence of low dimensional modes corresponding to active behavior with
high sensorimotor coordination. If so, there must be simple reasons behind that
scenario. One reason we see is in the very foundation of the principle itself. We
have defined an objective function that is domain invariant but manages, due to
the sensitization effect, to introduce a general drive for activity. Being completely
unbiased and self-referential with everything emerging out of the physical dynamics
itself, the combined system may be assumed to settle into the most simple solutions,
corresponding to a kind of dynamical synergy between the large number of degrees
of freedom in parameter space with those of the physical space. This scenario is
additionally supported by the dominating influence of the symmetries inherent in
the physical system.

5.3.5 Symmetry Groups as Attractors∗

One of the most prominent observations made with real systems under homeokinetic
control is the emergence of low-dimensional modes in high-dimensional systems,
manifest in particular by the predominance of oscillatory motion patterns. We argue
that the ultimate reason for this phenomenon is rooted in the symmetry properties
of the TLE, which structure the error landscape in a characteristic way, fostering
thereby the phenomenon of spontaneous symmetry breaking. Let us consider the
TLE defined in Eq. (5.9) for a state dynamics in n dimensions. The TLE

E = v>v = ξ>
1

LL>
ξ

is defined by the Euclidean norm so that it is invariant against rotations in the n-
dimensional space. Let us consider any transformation O of the orthogonal group
and replace L with O>LO so that

E = ξ>O>
1

LL>
Oξ
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by virtue of O> = O−1. Assuming moreover that the noise is invariant under O
so that any realization ξ is as probable as Oξ (this is justified for instance if the
noise is i. i. d.) we find that, in the stochastic sense, the TLE is invariant under the
replacement of L with its transformed O>LO. As a consequence, the TLE has, in
the stochastic sense, the same value for all L fulfilling the symmetry condition

L = O>LO (5.33)

for any O of the symmetry group or a subgroup thereof. As a consequence, the
symmetry group defines large plateaus in the landscape of the TLE that belong to
equivalent matrices L with related system behavior.

By way of example, we consider the two-dimensional case and assume that O is
a matrix

O(φ) =
(

cosφ −sinφ
sinφ cosφ

)
of the special orthogonal group7 SO(2). The symmetry condition Eq. (5.33) reads
now

LO(φ) = O(φ)L (5.34)

which is fulfilled if L is a scaled rotation matrix since all the orthogonal matrices
commute in 2D. This means in the linear case (where ψ (x) = Lx) that the plateau
in the error landscape is hosting all oscillatory motion patterns with a fixed but
arbitrary frequency. In more dimensions the scenario is a little different since not all
orthogonal matrices commute if the dimension is larger than two. However, in the
3D case for instance we can describe each SO(3) matrix as a rotation about a fixed
axis. Then, the above arguments repeat with respect to the subgroup of all rotations
about that axis. In general, one may always be able to find subgroups which leave
the error E invariant corresponding to large plateaus of equivalent behavior.

Another example may demonstrate that the symmetry groups do not only define
just plateaus but real valleys in the error landscape. Consider the matrix C of the
controller given by

C =

(
cosα −sinβ
sinβ cosα

)
. (5.35)

Figure 5.8 clearly demonstrates that, if α mod π= β , there is a deep valley in the error
landscape showing that a gradient descent in the α , β space would drive the system
into a pure oscillatory dynamics indeed.

Noteworthy, this is another example where the parameter dynamics converges
to a stable attractor (actually a metastable one, see Sect. 7.2.2 (p. 134)) for details,
similar to the fast-slow case considered above with the difference that the attractor
now is a limit cycle instead of a fixed point. A further difference is seen in the fact
that there is a continuum of states of the same minimal error value instead of just
one, the pitchfork bifurcation point in the former setting.

7 The SO(2) is the set of all orthogonal matrices with determinant equal to +1. It is only these
matrices that describe pure rotations.
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Fig. 5.8: Key features of homeokinesis — the role of symmetries. The normalized
error landscape of a two-dimensional system with the matrix of the controller C being
parameterized by two parameters α and β , see Eq. (5.35). For α mod π= β the controller
matrix is an SO(2) matrix (shown with gray lines). The message is that rotation matrices
supporting oscillatory behavior correspond to deep valleys of the error landscape.

It is important to note that the symmetry condition poses a direct requirement
only to L, see Eq. (5.34). In the general case, L may depend in a complicated way
on the parameters so that the findings on L must be translated into the “language” of
the parameter space before being able to draw conclusions on the influence of the
symmetry condition on the dynamics of the system.

This has a direct bearing on nonlinear systems where the translation depends on
the current state xt of the system since the Jacobian matrix L is a function of xt that
changes in time. However, let us consider a special subgroup G that leaves the TLE
invariant in the sense of Eq. (5.33). Let us consider moreover a sequence of states
xt , x̄t+1, x̄t+2, . . . chosen such that you can always find an element G of the group
so that, for any transition x̄t ′ → x̄t ′+1 between two subsequent states, the symmetry
condition

L(x̄t ′+1) = G>L(x̄t ′)G

is fulfilled for a specific set of parameters p of the Jacobian matrix. This means
that (i) the TLE is invariant under this dynamics and that (ii) this specific dynamics
belongs to the plateau of the TLE landscape defined by the symmetry group G.
In other words, there is an increased probability that this dynamics is discovered
and realized by the homeokinetic learning. A special example of this scenario is
the emergence and high stability of period-4 cycles in two-dimensional systems, see
Sect. 7.2.1 (p. 132), and the corresponding higher order cycles in higher dimensional
systems.

Quite generally, combined with the temperature effect introduced in Sect. 5.3.4
(p. 95), these plateaus play an essential role in understanding the amazing fact of the
emergence of low-dimensional modes in high dimensional systems and the prefer-
ence of periodic motion patterns in all systems realized so far in the applications,
see Chap. 7 for properties of idealized systems, Chap. 8 for low-dimensional, and
Chap. 10 for the high-dimensional robotic examples.
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5.3.6 Spontaneous Symmetry Breaking

The invariance properties reveal a most interesting similarity between the behavior
of homeokinetic learning systems and the general scenario known from self-orga-
nizing systems in nature. As discussed in more detail in Chap. 2, in nature we gener-
ically have on the one hand a force that tries to bring the system state to maximal
symmetry. On the other hand, the symmetry conserving tendencies are counteracted
by self-amplification mechanisms that blow up local microscopic fluctuations to a
macroscopic level.

The above considerations have shown that the landscape of the homeokinetic ob-
jective function (the TLE) is characterized by vast plateaus reflecting the invariance
of the TLE under groups of symmetry operations. Prominent example is the special
orthogonal group SO(n) (or subgroups thereof) which reflects the isotropy of the
state space, i. e. its invariance under rotations. Partly in combination with the tem-
perature effect, these plateaus may attract the system towards dynamical patterns of
high symmetry. This corresponds to the symmetry conserving drives observed in na-
ture. On the other hand, we know that the homeokinetic learning also increases the
instability in the system. In fact, it is designed to minimize the TLE, which is done
best if the controller enables the system to most sensitively react to its sensor values,
see Sect. 5.3.2. In the sensorimotor loop, this corresponds to the self-amplification
mechanism.

In this way we register a close correspondence to systems in nature with some-
thing like 1023 dimensions that are known to generate low dimensional patterns in
space and/or time of high regularity. The high regularity of these patterns, observed
for instance in the hexagonal structures in so many natural phenomena, may be at-
tributed to a kind of economy in symmetry breaking, i. e. symmetries are broken
preferentially in the least possible way, conserving as many as possible of the perti-
nent invariance properties. An impression of this economy principle can be gained
by the applications treated in later chapters, see for instance the example of the
SPHERICAL in a circular basin in Sect. 8.2.3 (p. 165).

Appendix 5.A Formalizations

The time-loop error (TLE) E defined by Eq. 5.9 (p. 79) can be rewritten in many
different ways that will prove helpful in the upcoming investigations. Often it is
helpful to use the trace operation to simplify derivations, writing for instance v>v =
Tr
(
vv>
)
= ∑

n
i=1 v2

i for any vector v ∈ Rn. Using the cyclic invariance property of
the trace, we may write the TLE as

E = Tr
(

vv>
)
= Tr

(
1
L

ξ ξ>
1

L>

)
= Tr

(
ξ ξ>

1
LL>

)
. (5.36)
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This is helpful when taking the average over the noise. Assuming the average8

〈ξ 〉= 0 (this is reasonable since any systematic dependence on ξ can be absorbed
into ψ), we write the covariance matrix of the noise as

D =
〈

ξ ξ>
〉

(5.37)

so that the average of E becomes

〈E〉= Tr
(

1
L

D
1

L>

)
. (5.38)

We introduce a scalar product between two n×n matrices A and B as9

〈A,B〉= Tr
(

A>B
)
= ∑

i j
Ai jBi j . (5.39)

We may generalize this by introducing a metric by means of any positive symmetric
matrix M, writing

〈A,B〉M = Tr
(

A>MB
)

(5.40)

so that

〈E〉=
〈

1
L
,D

1
L

〉
=

〈
1
L
,

1
L

〉
D
=

∥∥∥∥1
L

∥∥∥∥2

D
(5.41)

with the matrix norm ‖.‖2
D defined by the scalar product 〈., .〉D.

In the case of i. i. d. noise, the covariance matrix is defined as D = σ2I so that

〈E〉= σ2
∥∥∥∥1

L

∥∥∥∥2

(5.42)

with ‖.‖2 = 〈., .〉, correspondingly. This case is of general importance since the noise
ξ can always be brought to this standard form by a convenient coordinate trans-
formation in state space. Note however that in practice the covariance matrix may
rapidly change in time so that the coordinate transformation is dynamical.

Appendix 5.B Effective States

In this section we will discuss how the approximation leading to Eq. (5.8) can be
improved or even made exact. For that let us introduce the mean value theorem. It

8 Note the difference between the average of a quantity η written as 〈η〉 and the scalar product
between two matrices A and B written as 〈A,B〉.
9 The idea is to interpret the elements Mi j of a matrix M as the elements mα of a column vector
m so that the scalar product between matrices is reduced to the normal scalar product between
vectors.



P
e
rs

o
n
a
l 
C
o
p
y5.C Average Gradient 101

states that under very mild assumptions the expansion of a function f : R1 → R1

can be written as
f (s+a) = f (s)+ f ′ (s̄)a (5.43)

with s̄ somewhere between s and s+ a. This can immediately be translated to the
multi-dimensional case.

Transferred to our case, in Eq. (5.8) we have to choose an effective state x̄ in the
Jacobian matrix so that the input shift v becomes

v =
1

L(x̄)
ξt+1 .

If chosen correctly v may even become the exact solution of Eq. (5.2). However, it is
of course not trivial to find the appropriate effective state. In our elementary setting
one might use the explicitly known inverse of (tanh) and thus calculate the exact
effective state, as done in [102], but this is extremely complicated in more general
cases. Moreover, in the applications it appeared not to be so important, such that we
do not employ it here, see also the discussion below Eq. 5.7 (p. 78).

Interestingly, the effective state scheme can be adapted consistently to many dif-
ferent situations by using the effective state as a way to deal with more global
issues instead of enhancing the approximation in each individual time step. An
important example is given by the effective state under strong noise in the one-
dimensional sensorimotor loop discussed in Sect. 3.3.4 (p. 38). As we will demon-
strate in Sect. 6.2.2 (p. 110), the use of an effective state, obtained by averaging in
a sliding time window, shifts the minimum of the TLE from the classical towards
the effective bifurcation point. This is an important feature given the very favorable
properties of the sensorimotor dynamics when at the effective bifurcation point.

Quite generally, we prefer the definition of the TLE as given by Eq. (5.8) over the
rigorous but often rather useless exact mathematical one. Among many other advan-
tages, the definition is singled out by utmost simplicity, which is a very important
point for the application to the high dimensional systems studied in Chap. 10. In
fact, we have created in this way a pseudolinear structure that can be made more
exact if desired by just using an effective state x in Eq. (5.8).

Appendix 5.C Average Gradient

In many cases, the learning rate is small enough so that there is a certain self-aver-
aging of the noise in our on-line gradient descent rules. We can make this explicit by
directly taking the average over the noise ξ in the gradient expressions. By explic-
itly averaging the gradient, we get more direct information on the nature of homeo-
kinetic learning. This point will be exploited in Chaps. 6 and 7 in order to derive
basic effects in homeokinetic learning in idealized worlds.

The noise ξ enters only the primary gradient introduced in Eq. (5.20) with aver-
age
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∂E
∂L

〉
=−2

〈
χv>

〉
=−2

1
LL>

D
1

L>
. (5.44)

the covariance matrix D being defined in Eq. (5.37). Introducing this expression into
the general rule Eq. (5.19) immediately yields the average gradient. In particular, the
explicit learning rules Eqs. (5.25, 5.26) become now10,11

∆C = εcG′A>
1

LL>
D

1
L>
−εyx> (5.45)

∆h =−εy (5.46)

where ε is a diagonal matrix defined by its matrix elements as

εi j = 2εcαδi j

(
A>

1
LL>

D
1

A>

)
i j
. (5.47)

In the special but important case that the noise is i. i. d. so that D=σ2I, we obtain
the learning rule as

∆C = εG′A>
1

L>LL>
−εyx> (5.48)

∆h =−εy (5.49)

with

εi j = 2εαδi j

(
A>

1
LL>

1
A>

)
i j

(5.50)

and
ε = εcσ2 , (5.51)

ε may be called a normalized learning rate. In particular, we can infer the limit of
vanishing noise by adapting εc as

εc =
ε

σ2 (5.52)

with ε kept fixed. In this way, we can study the most typical behaviors with the
learning dynamics at a finite speed whereas the noise in the state dynamics is equal
to zero so that the combined dynamics (comprising state and parameters) is deter-
ministic. This procedure can be readily generalized to arbitrary noise by considering
σ2 as a common factor for all noise strengths in the different channels.

10 We can directly derive the learning rule from Eqs. (5.25–5.27) by writing the terms
〈
µv>

〉
=

G′A>
〈
χv>

〉
= −G′A>

〈
∂E
∂L

〉
and 〈µiζi〉 =

(
G′A>

〈
χζ>

〉)
ii =

(
G′A> 1

LL>
〈
ξ ξ>

〉 1
G′A>

)
ii

by
means of Eq. (5.24). The common factor of 2 is absorbed into the learning rate εc.
11 Use pseudoinverses if necessary.
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Appendix 5.D Remarks on Reconstruction vs. Postdiction

Let us discuss the different definitions of the TLE given above on a more general
level. Actually, we are free to define the structure of the dynamics model rather
arbitrarily. Let us discuss this point in terms of the so called generative models for a
(stationary) stochastic process {Xt}∞

t=0. Any realization {xt}∞

t=0 can be represented
by a so called generative model [127] as

xt+1 = Φ (xt ,ρt)

with ρt being the realization of another stochastic process ρt that can be considered
as the noise. Actually, the structure of the function Φ can be chosen more or less
arbitrarily, its choice being reflected in the properties of ρ . If the modeling function
Φ is chosen reasonably, the noise will be small and as “noisy” as possible, meaning
that both its size and the dependence on the state vector xt is minimized. This leads
us to our second remark concerning the relation to what is usually understood by
postdiction. Quite generally, postdiction is the task of giving an estimate of previous
instances of a time series in terms of the current one. The standard approach is given
by learning a function µ (that might contain internal states) so that

xt = µ (xt+1)+ρt (5.53)

with ρ “small and noisy.” In terms of µ one can model the behavior of the sys-
tem backward in time. However, if the process Xt is stationary the estimated value
x̂t = µ (xt+1) is qualitatively different from the reconstructed value ψ−1 (xt+1). The
reason is that, while ψ represents the systematic part extracted by following the
dynamics forward in time, the function µ represents the systematic part backward
in time. However, assuming detailed balance, see [55], the process looks the same
forward and backward in time. Technically, this means that µ is not equal to ψ−1

so that postdiction in the sense of Eq. (5.53) is different from our procedure of re-
construction as inverted prediction.

Appendix 5.E Derivation of Eq. (5.16)

We need as a first step the derivative of the inverse matrix L−1. Considering that
LL−1 = I we find

0 =
∂

∂ p

(
L

1
L

)
=

(
∂L
∂ p

)
1
L
+L

∂
∂ p

1
L

so that
∂

∂ p
1
L
=−1

L

(
∂L
∂ p

)
1
L
.

As the next step we consider for any two vectors a and b
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a>
(

∂
∂ p

1
LL>

)
b = 2a>

1
L>

(
∂

∂ p
1
L

)
b =−2a>

1
LL>

(
∂L
∂ p

)
1
L

b

where we used that a>Q>b = b>Qa for dealing with the inverse of L>. Using
the gradient in Eq. (5.13) and absorbing the factor 2 into the learning rate yields
Eq. (5.16).

Appendix 5.F Derivation of Eqs. (5.22, 5.23)

In order to derive Eq. (5.22) we start from Eq. (5.16), use L from Eq. (5.12), and
consider

χ>
∂L

∂Ci j
v = χ>AG′

∂C
∂Ci j

v+χ>A
∂G′

∂Ci j
Cv

= T1 +T2 .

The first term is treated easily, writing it with χ>AG′ = µ> as

T1 = µ>
∂C

∂Ci j
v = ∑

kl
µk

∂Ckl

∂Ci j
vl = µiv j

In order to evaluate the second term we have to consider that G′ is a diagonal matrix,
G′ = diag[g′ (z1) , . . . ,g′ (zm)] = diag[g′1, . . . ,g

′
m] so that with z =Cx+h and

∂ zk

∂Ci j
= δikx j and

∂g′k
∂Ci j

= δikg′′i x j

we get

T2 = χ>A
∂G′

∂Ci j
Cv =

(
χ>A

)
i
g′′i (Cv)i x j .

In the case of the tanh activation function we have g′′i =−2gig′i =−2yig′i so that

T2 =−2
(

χ>AG′
)

i
(Cv)i yix j =−2µiζiyix j (5.54)

with ζ =Cv.
The derivative w. r. t. h is obtained as

χ>
∂L
∂hi

v = χ>A
∂G′

∂hi
Cv =

(
χ>A

)
i
g′′i (Cv)i .

In the tanh case this becomes

χ>
∂L
∂hi

v =−2µiζiyi .
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Actually, the derivation is not yet complete since the state x featuring in L is in
general also depending on the parameters of the controller. This is obvious for a
fixed point system with the fixed points being given by x = ψ (x) or, in the specific
setting,

x = Ag(Cx+h)

ignoring the noise (prediction error). We have analyzed this system for the special
case of the pitchfork bifurcation in Sect. 3.3.2 and found that already in this elemen-
tary case the dependence of the state on the parameters is very complicated so that
a general rule for these effects is prohibitively complicated in the general case.

Therefor we need an approximate rule for considering these effects. In Sect. 6.2
we analyze the situation and give arguments for lumping the effects of the state
dependence into an empirical factor modifying the strength of the term T2, i. e. we
rewrite Eq. (5.54) as

T2 =−εixiy j

with the channel dependent learning rates εi defined now as (in the case of the tanh
activation function )

εi = 2αµiζi

where α is the empirical factor (default value 1) weighting the T2 term.

Appendix 5.G Moore-Penrose Pseudoinverse

The pseudoinverse yields solutions of ill posed linear inverse problems. Given two
vectors u ∈ Rm and v ∈ Rn, the inverse problem of finding v as the solution of
the equation u = Qv where Q ∈ Rm×n, is ill posed if m 6= n. This linear system of
equations is overdetermined if m > n (more equations than unknowns) so that there
is no solution in general. However, we can ask for some best solution, usually this
is the one fulfilling the least squares criterion that ‖u−Qv‖ is minimal,

‖u−Qv‖ != min

More generally, we can impose the additional condition that the solution is of mini-
mal norm, corresponding to the objective function

‖u−Qv‖2 +λ ‖v‖2 . (5.55)

The minimum fulfills
Q> (u−Qv)−λv = 0

with solution
vλ =

1
Q>Q+λ I

Q>u .
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With finite λ we have a regularized inverse, which is always existing. In the limit,
this solution is written as v = Q+u with the pseudoinverse Q+ defined by

Q+ = lim
λ→0

1
Q>Q+λ I

Q> . (5.56)

Note that Q+ is a so called left inverse, i. e. Q+Q = I. If the problem is underdeter-
mined, i. e. m < n (more unknowns than equations), there are, in general, infinitely
many solutions. The one we choose is again derived from the objective Eq. (5.55)
and, in the limit λ → 0, is obtained as

Q+ = lim
λ→0

Q>
1

QQ>+λ I
(5.57)

so that the matrix to be inverted is again a square matrix of the minimal dimension.
Equation (5.57) defines the right inverse, i. e. QQ+ = I. If QQ> is not singular we
immediately see that Eq. (5.57) is a solution of u = Qv since

u = Qv = QQ>
1

QQ>
u = u

for any u that is not the null-vector. The advantage of these two expressions is that
one can always find the pseudoinverse by inverting a matrix of dimension min(m,n).

The concept of pseudoinverses is generalized in Sect. 15.4 (p. 277).



P
e
rs

o
n
a
l 
C
o
p
yChapter 6

From Fixed-Point Flows to Hysteresis Oscillators

Abstract: Homeokinesis realizes the self-organization of artificial brain-body systems by
gradient descending the time-loop error, a quantity that is truly internal to the robot since
it is defined exclusively in terms of its sensorimotor dynamics. Homeokinesis can therefore
be considered as a self-supervised learning procedure with the special effect of making
the brain-body system self-referential. We will study this phenomenon here in an idealized
one-dimensional world in order to identify key features of our self-referential dynamical
systems independently of any specific embodiment effects. In particular, we will gain some
insight into the entanglement of state and parameter dynamics and investigate the way how
the latter induces behavioral variability.

One of the key features of homeokinesis, as introduced in the preceding chapter,
is self-referentiality. A discussion was given already in Sect. 5.3.1 at a general level.
This chapter studies concrete features of our one-dimensional self-referential dy-
namical systems. We consider for that purpose idealized worlds stripped from any
embodiment to get the most basic effects. As it turns out, the parameter dynamics
modifies the original system dynamics in a systematic way. The most prominent
effects are to make fixed points flow towards bifurcation points and to turn hystere-
sis systems into hysteresis oscillators (by a self-induced sweeping of the hysteresis
parameter). We will develop these fundamental properties of our approach in an
essentially self-contained way.

Many of the specifics of homeokinetic systems can be seen already in the case of
the one-dimensional sensorimotor loop that was introduced in Sect. 3.3. By way of
example we may again consider the single-wheel controller of a mobile robot. Let
us reconsider our general sensorimotor dynamics given by

xt+1 = ψ (xt)+ξt+1 (6.1)

with
ψ (x) = AK (x) = Ag(Cx+h) , (6.2)

x ∈ R1, and the controller outputs

yt = K (xt) = g(Cxt +h) , (6.3)
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where g : R1→ R1 is the activation function g(z) = tanh(z). The forward model is
nothing but the hardware constant A relating motor to sensor values.

6.1 Time-Loop Error in One-Dimensional Systems

In the time-loop error as introduced in Eq. 5.9 (p. 79) the Jacobian is given now in
terms of the 1×1 matrix

L(x) = AK′ (x) = ACg′ (z)

with z =Cx+h so that the time-loop error (dropping time indices) is

E (x) =
ξ 2

L2 (x)
(6.4)

treating all 1× 1 matrices as scalars. Learning consists in gradient descending the
time-loop error so that we can get a first impression of the learning dynamics from
the error landscape, considering first E as a function of R= AC with h= 0. The error
landscape is characterized by the two singularities, given by the zeros of L at either
C = 0 or |z| → ∞ (so that g′ (z) = 0), i. e. at the maximum saturation of the neuron.
Both singularities correspond to the maximum insensibility of the neuron against
changes of the input. At all other values of C, the error is obtained by defining the
fixed point x and evaluating the value of L(x). This must be done numerically, since
the fixed point equation is transcendental. The resulting curve was already presented
in Fig. 5.5 (p. 93) and is repeated here in Fig. 6.1. Obviously, when following the
gradient the system is driven to the point of maximum sensitivity as indicated by the
fact that L = 1 at the bifurcation point (R = 1) 1.

6.2 Explicit Learning Rules and Fixed Point Flows

The learning rules for the adaptation of the parameters C and h are given by the
gradient descent on E. We could of course use the generally valid rules given by
Eqs. (5.22, 5.23) but it is instructive to repeat the derivation here in more elementary
terms.

1 Note that the local Lyapunov exponent λ is given by λ = lnL in the one-dimensional case so that
λ = 0 right at the bifurcation point.
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Fig. 6.1: The time-loop error over the feedback strength R in a one-dimensional loop.
Gradient descent drives the feedback strength towards R= 1, the point of minimal stability
of the fixed point. The error is normalized w. r. t. the noise strength.

6.2.1 Learning Rule

Starting from the general gradient descent formula for updating C, i. e.

∆C =−ε
∂E
∂C

(6.5)

we obtain by using Eq. (6.4) and putting h = 0 for the moment

1
2

∂
∂C

E =−E
L

∂L
∂C

=−E
L

(
Ag′−2gg′AC

∂ z
∂C

)
=−E

(
1
C
−2g

∂ z
∂C

)
where g′′ = −2gg′ is the second derivative of the tanh activation function. In order
to get an explicit learning rule we have to evaluate the derivative ∂ z/∂C.

Let us assume that the state is fluctuating around a fixed point of the deterministic
dynamics and the noise is sufficiently low so that we can use the fixed point equation
z = CAg(z) to obtain ∂ z/∂C = x+ L∂ z/∂C using x = Ag(z). Rearranging yields
∂ z/∂C = x/(1− L) so that by introducing the (state dependent) relative learning
rate

αx =
1

1−L(x)
(6.6)

the learning rule can be written as

1
εE

∆C =
1
C
−2αxyx . (6.7)

The detailed analysis of this learning rule is delegated to the appendix, Sect. 6.A,
since the message is the one already given by Fig. 6.1 and its essence is depicted
in Fig. 6.2. Noteworthy is the discontinuity of the gradient at R = 1 so that the
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Fig. 6.2: Fixed point flow with homeo-
kinetic learning. The learning dynamics
drives the fixed points towards the pitch-
fork bifurcation point in the case of van-
ishing noise.

feedback strength R is driven with always finite speed towards the bifurcation point.
The discontinuity is a direct consequence of the kink in the error curve seen in
Fig. 6.1. We note again that the learning process converges towards the point of
maximum sensitivity of the sensorimotor loop against external perturbations.

The above results, in particular the discontinuity of the gradient at the bifurcation
point, is only true as long as the noise is vanishingly small. In fact, the derivation of
αx rests on the fact that the state variable x is fluctuating around one of the two fixed
points of the bistable system. Rigorous results can only be achieved in the limit of
ξ 2→ 0 and ε → ∞ such that the product εξ 2 remains finite. Therefore, the result is
more of academic interest and we have to modify it for the finite noise situation.

6.2.2 Learning under Real World Conditions

In any real system the noise (prediction error) is finite, such that the clear fixed points
of the deterministic system may be destroyed and the effective bifurcation point
becomes important. Detailed considerations are given in the appendix, Sect. 6.B,
but the message is again very simple: We can introduce a constant relative learning
rate α in Eq. (6.7),

1
εE

∆C =
1
C
−2αxy (6.8)

to define the point of stationarity for the feedback strength R such that the parameter
dynamics converges towards the desired working regime. In the specific case the
point of convergence is characterized by2

z ∝

√
1
α

. (6.9)

for small values of α . As a consequence, the case of infinitesimal noise is covered
by the limit of α → ∞.

2 Note that the motor value y = g(z) decrease with increasing α . This might have to be corrected
for in practical applications.
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By this mechanism the system can be driven to the “interesting” region, discussed
as the effective bifurcation point in Sect. 3.3.4, as we will see below. For an intuitive
picture check Fig. 3.10 (p. 40). The considerations remain valid also in the multi-
dimensional case to a certain extent, see for instance Sect. 7.2.4. We therefore keep
in the general algorithm α as a sensibility parameter for open choice. In the sox
algorithm (Sect. 15.1) the parameter is called sense. The name is chosen because,
with too large values of α , the working point is shifted in the direction of a subcrit-
ical behavior, where the system reacts very sensitive to the external perturbations,
whereas within the supercritical region (too small α) the system sticks more reso-
lutely to the selection of one of the modes (fixed points or oscillations) the system
is capable of.

Moreover, there is a severe practical reason for using an empirically fixed value
of α . In most applications we cannot assume that our state is at a fixed point or, if so,
that we cannot know enough on its dependence on the parameters of the controller.
When ignoring this dependence altogether, we get α = 1, which is what we used
in most of our practical applications with high-dimensional and compliant robotic
systems. Nevertheless it is often helpful to enhance or damp the influence of the
second term in the learning rule so that the α parameter is important for the general
algorithm.

6.2.3 Relation to the Effective Bifurcation Point∗

The relation of the α parameter to the effective bifurcation point can be established
by using an appropriate effective state in L, see Sect. 5.B (p. 100). A working defi-
nition is given by a moving average of the state xt in a certain time window. This is
suggested by the results of Sect. 3.3.4 demonstrating that the averaging defines the
effective bifurcation point in a rather obvious way. The effect is immediately clear
if we use the averaged state values x̄ instead of xt in the definition of E (6.4). The
result is visualized in Fig. 6.3 displaying the normalized error E/ξ 2 as a function of
R = CA for the case of both vanishing and finite noise. The TLE with the effective
state concept has the minimum at the effective bifurcation point (with a specific χ ,
see below) and this is where the rule Eq. (6.8) is driving the system.

The theory presented in the appendix, Sect. 6.B, can even give a rough estimate
of the appropriate choice as

α ∝
1

χ
√

D
(6.10)

where D =
〈
ξ 2
〉

is the variance of the noise. Remember the parameter χ determines
the concrete working point depending on the preferred timescales. Eq. (6.10) gives
us a feeling for the correct choice of α , which, however, is appropriate only if the
noise is quite small.
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Fig. 6.3: Time-loop error with converging parameter dynamics. The normalized time-
loop error for the one-dimensional loop as a function of the feedback strength R =CA in
the case of vanishing noise (line) and uniform noise in [−0.1,0.1] (dots). The minimum is
at the bare and effective bifurcation point, respectively. In the finite noise case, the Jaco-
bian matrix was taken at the effective state obtained by averaging in a sliding time window
of 20000 steps. The particular effective bifurcation point at Reff = 1.14 was obtained from
Eq. (3.29) with χ = 3.5 (D = 0.003), see Fig. 3.11.

6.3 Extending the Parameter Space — The Hysteresis Oscillator

The learning dynamics so far is quite close to the conventional one: we have an
objective function E and change the parameters of the controller in order to reach
convergence at the minimum of E, reaching thereby a specific working regime defin-
ing the behavior of the robot. The principle of Homeokinesis means more than that.
A generic example is obtained if we extend the parameter space of the controller.
We consider now the controller, see Eq. (6.3), including h, the bias of the neuron.
In the learning scenario, h is just another parameter to be driven by the gradient de-
scent. If included we obtain the following state-parameter dynamics (putting α = 1
for simplicity as discussed in Sect. 6.2.2)

xt+1 = Ay+ξt+1 (6.11)
1

εE
∆C =

1
C
−2xy (6.12)

1
εE

∆h =−2y (6.13)

with y = g(Cx+h) and all quantities without time index taken at time t.
Figure 6.4 shows the emergence of a new effect. Starting at a subcritical value of

the feedback strength R = AC of the loop, R is driven rapidly towards larger values
just in the same way as without bias. However, as soon as the loop becomes super-
critical, we observe the onset of regular oscillations driven by h that reach a finite
amplitude after some time. Both shape and frequency of the oscillations depend on
the learning rate ε in a definite way. This oscillatory regime has already been consid-
ered in Sect. 5.3.3.2 (p. 93) but with the difference that there the feedback strength
R was kept fixed so that there was only the single parameter h driven by the learning
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Fig. 6.4: State and parameter dynamics in the one-dimensional case. C increases until
it reaches its fixed point around 1.2. The bias h oscillates around zero and causes the state
x to jump between the positive and negative fixed points at x∗ ≈±0.65 (for h= 0). Setting:
Average gradient, A = 1, ε = 0.001, α = 1, infinitesimal noise.

Fig. 6.5: Time-loop error with limit cycle oscillations. Error landscape of the normal-
ized time-loop error of the system Eqs. (6.11, 6.13) with C = 1.05 and a trajectory starting
at x = .001 and h = 0.0. As in Fig. 6.6, in the limit cycle we observe an oscillatory behav-
ior of the error.

rule. The difference now is that obviously the feedback strength self-regulates into
this critical value where the oscillations is stably realized.

One can show that the frequency ω of the oscillations is

ω =
√

2ε +O
(

ε
3
2

)
,

see Sect. 6.C for the conditions and the derivation.
The behavior of the error can be understood by studying Fig. 6.5 that depicts the

error landscape over the variables x and h with R fixed at the slightly supercritical
value R = 1.05. Starting from some small values for both state and parameter, the
system very soon reaches the limit cycle. Following the trajectory, the varying values
for the error can be read off. Note that the velocity of the trajectory on the surface is
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Fig. 6.6: Time-loop error with extended parameter space. The figure depicts the be-
havior of the normalized time-loop error if both h and C are included into the combined
dynamics. Please note the logarithmic scale, showing that the error dynamics, before
reaching the limit cycle, is extending over more than one order of magnitude. The curves
belong to different initial values of C, see legend, and starting values x0 = 0.5, h0 = 0 in
all cases. Setting: Average gradient, A = 1, α = 1, ε = 0.05.

depending on its position, which generates for instance sharp rises in the evolution
of the error values.

These sudden jumps to higher values of the error are seen very distinctly in
Fig. 6.6, depicting the evolution of the error for different values of the feedback
strength R. We have chosen a logarithmic scale for the error in order to underline its
vast variations of the error. Figure 6.7, depicting the foliation of the error landscape
in a hysteresis system, may serve as yet another clarification of the situation.

Fig. 6.7: Time-loop error over bias h (left) and feedback strength R. If the bias is
included, the sensorimotor loop becomes a hysteresis system with either a single or two
stable fixed points. The error landscape, seen from two different angles, clearly reflects
this property by foliating in the latter region. The landscape has a minimum at R = h = 0
in the case of vanishing noise considered here. With finite noise and effective states this
minimum is shifted like in Fig. 6.3. Then, the gradient descent becomes a hysteresis cycle
due to jumps between the folios.
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We have given in Sect. 5.3.3.2 (p. 93) already an explanation for the effect in a
more general context that can now be supplemented by a detailed mechanism for
the entanglement between state and parameter dynamics. As seen from Eq. (6.13),
the h dynamics is easy to understand since its direction of change is always opposite
to the sign of y. So, if y is in the saturation region (|y| = 1− δ with delta� 1),
the h dynamics will drive it out of that region. This is in correspondence to the
general rule that homeokinetic learning is trying to make the neuron more sensitive.
However, due to the hysteresis property (Fig. 5.7), there is an overshooting. After h
has crossed the zero line, the state does not immediately switch to the other fixed
point, but requires a certain value of h (with opposite sign of x). This effect leads to
an oscillatory dynamics of the combined system.

Altogether, the h dynamics generates a periodic running through the hysteresis
cycle introduced in Sect. 3.4. The difference to the usual hysteresis scenario is that
the phenomenon is self-generated by the h dynamics inherent in the learning rule
instead of being controlled by hand as in Fig. 3.17(c) and Fig. 3.18. There is a close
similarity of the above dynamics with so called relaxation oscillators like the van
der Pols oscillator or the FitzHugh-Nagumo-model of a single neuron, see Sect. 6.5.
In our case, the phenomenon rests on the hysteresis properties of the system so that
we may call it a hysteresis oscillator.

6.4 Embodiment and Situatedness — Robotic Experiments

Sensitization and self-induced hysteresis oscillations have been established above as
phenomena generated by the homeokinetic controller acting in an idealized world.
We are now going to apply the controller to some more realistic settings with real
robots, in simulation at least. These investigations will demonstrate that the balanc-
ing of the controlled system between instability and regularity leads to interesting
effects, like spontaneous cooperation in multi-dimensional systems, that are directly
related to the specific embodiment and the situatedness of the robot. Actually, so far
we have investigated only the one-dimensional sensorimotor loop but we can apply
those findings to much more complicated systems by adhering to the paradigm of
decentralized control, meaning that each degree of freedom (DoF) has its own inde-
pendent homeokinetic controller. The robots we will consider are wheeled robots, a
chain of those, and the so called ARMBAND robot, which is a complicated physical
object with 18 degrees of freedom.

6.4.1 Wheeled Robots

Our first topic is to exemplify the role of the embodiment with different robots un-
der homeokinetic control. In Experiment 6.1 we consider three mobile robots with
different embodiment, the TWOWHEELED, the LONGVEHICLE, and the FOUR-
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WHEELED, see Video 6.1. Methodologically, we study the influence of the em-
bodiment by using identical controllers always with the same initial condition and
learning rate so that the only difference is the embodiment. Nevertheless, as you
may find out by doing the experiments or by watching Video 6.1, the behavior of
the robots is very much different depending on both the embodiment and the situat-
edness (maze or empty arena).

We consider the case of decentralized control, namely the motors are driven each
separately by the above introduced controller with parameter dynamics given by
Eqs. (6.12, 6.13). Each controller receives only the readings of the corresponding
wheel velocity sensor. The TWOWHEELED robot shows a pattern of on-site rota-
tions followed by occasional forward or backward movements. Quite differently, the
FOURWHEELED robot clearly prefers the straight motions since the on-site rotations
are more difficult to realize due to a kind of resistance against turning around caused
by the specific morphology. In the same way, the motion pattern of the LONGVEHI-
CLE robot are largely depending on the length of its body since the longer the vehi-
cle, the more “resoluteness” is required to change the direction of the motion. As a
first conclusion, the homeokinetic learning rule generates a self-regulated search of
the behavior space that is dominated by the morphology and the physical properties
of the robotic system in its interaction with the environment.

Experiment 6.1: Emerging search with mobile robots
For this experiment you have two choices: (a) Different wheeled robots (learning) in a square arena without obstacles
and (b) five LONGVEHICLEs in a maze (learning), see Video 6.1. During the simulation you may change the parame-
ters epsC to speed up or slow down the learning speed. Try >epsC=.005 or >epsC=.05
Use the GUILOGGER to watch sensor values and motor values and parameter evolution. Consider the dependence of
the motion patterns on both the morphology of the robot, the obstacle situation in the playground and the parameters.

6.4.2 Spontaneous Cooperation in a Chain of Wheeled Robots

In the single robot experiments we have observed a sensitive reaction to physical
forces caused either by collisions or by the inertial effects due to the mass of the
body itself. These forces hinder the function of the motors so that the wheels may
get totally or partly blocked, thereby influencing the sensor values of the wheel
counters. What happens if we connect many of the TWOWHEELED robots by a
passive joint? We have already seen in Sect. 3.3.5.2 that, with a fixed closed loop
controller, the individual elements can spontaneously synchronize. We observed a
collective behavior enabling the chain to explore a maze, provided the feedback
strength was chosen around the critical point. At the critical point, the sensorimotor
dynamics is very sensitive to external perturbations so that each individual control
loop is easily switched by physical forces, exerted by the other robots in the chain
so that the wheels may synchronize their actions.
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(a) (b)

Video 6.1: The role of embodiment and situatedness with wheeled robots. (a) Three
different wheeled robot with each wheel controlled by its own homeokinetic controller.
The TWOWHEELED mostly rotates, the FOURWHEELED drives mostly straight, and the
LONGVEHICLE does both equally likely; (b) LONGVEHICLEs of different length in a
maze. The robots may get stuck, but manage to find out again. Upon being blocked,
actions are very gentle because the sensor values are small and thus the activity in
the sensorimotor loop goes down rapidly. Due to the sensitization effect in the learn-
ing dynamics, the feedback strength is increasing rapidly so that stronger and stronger
actions are performed. Settings: εc = 0.02,εA = 0.01. The videos can be watched at
http://playfulmachines.com.

Will the synchronization be further enhanced if we include learning or will the
entanglement with the parameter dynamics rather serve as an irritation of this sub-
tle synchronization phenomenon? Interestingly, with homeokinetic learning there
is even an additional tendency to synchronize. With enabled bias dynamics, each
learning controller is able to initiate the switching from one fixed point to the other
with its bias dynamics. The switching frequency is proportional to the size of the
modeling error, which is low if all wheels cooperate, but is high if the wheels are
working against each other, because then the wheel velocity does not follow the
motor actions. If out of synchrony, the controller therefore will be more ready for
switching the fixed point and thereby getting in synchrony with the other loops. We
can understand this also as an example of the general temperature effect as intro-
duced in Sect. 5.3.4.

Video 6.2: Chain of wheeled robots exploring a maze. Five TWOWHEELED robots
connected to a chain by passive joints. Control is decentralized with each wheel being
controlled individually by a homeokinetic controller. The position of the red robot is used
for the analysis in Fig. 6.8. Settings: εc = εA = 0.01. The video can be watched at http:
//playfulmachines.com.

http://playfulmachines.com/videos.html#vid:HKEx:longwheeled:split:a
http://playfulmachines.com/videos.html#vid:HKEx:longwheeled:split:b
http://playfulmachines.com/videos.html#vid:HKEx:longwheeled:split
http://playfulmachines.com/videos.html#vid:HKEx:robotchain:split
http://playfulmachines.com/videos.html#vid:HKEx:robotchain:split
http://playfulmachines.com/videos.html#vid:HKEx:robotchain:split
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We performed some experiments with a chain of five robots in a maze, see
Video 6.2. After initialization in the subcritical region, the destabilization drive of
homeokinetic learning slowly but systematically increases the feedback strength in
the loop so that the chain starts to move after some time. Upon hitting an obstacle the
chain typically inverts its velocity, such that the maze is well explored. In Fig. 6.8 the
quantitative data is displayed and we see that with homeokinetic learning the arena
is explored very well for a large range of learning rates, the learning system visits
nearly twice as much of the area as the best static controller (that was determined
empirically by scanning the parameter range), i. e. the one used in Sect. 3.3.5).

(a) Homeokinesis

æ

æ æ æ æ æ
æ

0.00 0.01 0.02 0.03 0.04 0.05
Ε

0.05

0.10

0.15

0.20

area

(b) Static coupling

æ
æ

æ

æ

æ
æ

æ

0.95 1.00 1.05 1.10 1.15
C0.00

0.05

0.10

0.15

0.20

area

(c) Homeokinesis

-20 -10 0 10 20

-20

-10

0

10

20

(d) Static coupling

-20 -10 0 10 20

-20

-10

0

10

20

Fig. 6.8: The chain of robots explores a maze much more effectively with homeo-
kinetic learning. (a) Area coverage (box counting method, normalized to full area in-
cluding obstacles) for the homeokinetic control in dependence on the learning rate (small-
est value ε = 0.001). Mean and standard deviation of 10 runs of 30 min length is plotted;
(b) The same as in (a), but for the fixed controller in dependence on coupling strength C;
(c) Sample trajectory with learning and ε = 0.02 with area coverage of 0.18; (d) Sample
trajectory for static controller with C = 1.075 with area coverage of 0.1. In all figures the
position of the second robot in the chain (drawn in red in Video 6.2) was used.
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Experiment 6.2: Spontaneous cooperation in a chain of robots
Start the simulation Spontaneous cooperation in a chain of robots. The setting is as shown in Video 6.2. Try different
parameters for
>epsC.
Also check the difference to the case without learning by putting
>epsC=0 and >coupling=1.1
The latter sets the coupling strength C to the given value and resets the bias to h = 0.

Fig. 6.9: SLIDER ARMBAND
moving over an obstacle. The
robot has 12 hinge joints and
6 slider joints, each actuated
by a servo motor and equipped
with a proprioceptive sensor.
The name comes from the Ger-
man word Armband meaning
a wristband or bracelet of a
watch.

6.4.3 Emergent Locomotion of the SLIDER ARMBAND

The cooperation and the emerging search for behavioral modes can be also observed
in more complex objects. In Experiment 6.3 we realize the decentralized control
of a bracelet-like robot called SLIDER ARMBAND as depicted in Fig. 6.9. In this
experiment, each joint is controlled by an individual controller as described above.
The controller receives the measured joint angle or slider position, the output of the
controller defining the target joint angle or target slider position to be realized by
the motor. The motors are realized as servomotors, see Sect. 16.4.4 for details, with
a limited force so that the target angle may differ substantially from the true joint
angle due to the load on the joint caused by the interaction with obstacles or the
interaction between the system’s different degrees of freedom. It is only by these
deviations that the current physical state of the entire body is influencing both the
control and the learning process.

Video 6.3: Locomotion of SLIDER ARMBAND with decentralized control. Each of the
18 joints is controlled individually by a one-dimensional controller with the corresponding
joint position as the only input information. Nevertheless, after some time a spontaneous
cooperation of the segments occurs that causes the robot to locomote. It can even surpass
obstacles. At the walls the robot manages to invert its velocity. The video can be watched
at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:HKEx:sliderwheelie:split
http://playfulmachines.com/videos.html#vid:HKEx:sliderwheelie:split
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Experiment 6.3: Spontaneous cooperation in high-dimensional systems.
The simulation Spontaneous cooperation in high-dimensional systems starts with a the SLIDER ARMBAND placed in
a square arena. You may change the parameters epsC, epsA, and noise. Try
>epsC=0
to switch off learning of the controller. Try also other values between 0.01 and 10. Use the GUILOGGER for watch-
ing sensor values, motor values and the parameters for the controller of the first joint.(The parameters of the other
controllers are not visible). Study the dependence of the emerging motion patterns on the learning rate and the noise
strength.

The mechanism for getting into a collective locomotion mode is different from
that of the chain of wheeled robots. In the mobile robot case, the fixed points of
the dynamics determine the rotation speed of the wheels. In this way a fixed point
causes a steady motion. This is different in the SLIDER ARMBAND where the sen-
sor state xt and the motor commands yt define a static configuration of the robot.
Thus, a locomotion mode of the SLIDER ARMBAND can only be achieved by ac-
tively changing between the fixed points in an organized manner. The closer analysis
shows that it is the bias dynamics that plays the central role in this process. In our
underactuated setting, those segments of the chain that are currently lying on the
ground do not have enough force to move in any direction. So, it is the physical sit-
uation that keeps the sensor values constant. However, the bias dynamics is running
anyway and as we know from Sect. 6.3 the bias dynamics aims at destabilizing the
current fixed point. As long as the joint is blocked it cannot switch even though the
motor commands are already shifted by the bias onto the opposite side; but as soon
as the joint is getting free the still outstanding switching can eventually take place.

With a hinge joint this means that it actively bends once it is getting physically
free. In this way the individual elements (hysteresis oscillators) get in synchrony
with any potential movement of the robot and thus the entire SLIDER ARMBAND
develops a robust locomotion behavior. Video 6.3 gives an example. In the experi-
ment, we start with a subcritical initialization without learning in order to demon-
strate that the robot will come to rest very quickly. Note that with very strong motor
power, the SLIDER ARMBAND could stabilize a wheel-like shape, but this is not
possible in our underactuated, weak-force setting. After enabling the learning, the
robot starts to move since the learning drives the system towards instability. The
movement is seen to become more and more regular. The locomotion is smoothly
adapted when surpassing an obstacle. Later on we switch off the learning and the
robot comes to rest, even though the control parameters were tuned appropriately
by the learning. Thus the ongoing learning and the entanglement between state and
parameter dynamics is essential for this behavior. You can convince yourself by
performing Experiment 6.3.

6.5 Relation to Other Systems

The homeokinetic neuron has a close relation to well known physical systems and
neuron models. Let us consider the neuron in its feedback loop with the combined
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dynamics given by Eqs. (6.11–6.13). As shown above, the coupling strength C
reaches a slightly supercritical value after a short time and stays there forever with
a low amplitude oscillation. We therefore assume C to be fixed and consider only
Eqs. (6.11, 6.13) describing the interplay between the bias and the state dynamics.
The relation to the physical systems is seen best if using the z dynamics obtained by
multiplying Eq. (6.11) with C and adding h on both sides.

Dropping the noise, using R = CA, and absorbing all positive factors into ε we
can write

zt+1 = Rg(zt)+ht (6.14)
ht+1 = ht − εg(zt) . (6.15)

Rewriting this in terms of the updates ∆zt = zt+1− zt and ∆ht = ht+1−ht , we may
consider Eqs. (6.14, 6.15) as the Euler approximation of the system of differential
equations

ż = Rg(z)− z+h (6.16)

ḣ =−εg(z) . (6.17)

With g(z) = tanh(z), Eqs. (6.16, 6.17) realize the dynamics of a so called relaxation
oscillator. In particular, with R = 1+δ and 0 < δ � 1, the amplitude of the system
can be kept small so that we may approximate g(z) by z− z3/3. With a convenient
rescaling of both time and variables, Eqs. (6.16, 6.17) can be given the standard
form of the famous Van der Pol oscillator [84]

ż = z− z3

3
+h (6.18)

ḣ =−ε ′z (6.19)

using only the leading term of g(z) in the equation for ḣ since the amplitude of
the h oscillations is inferior to that of z. This is a well studied self-exciting non-
linear oscillator, used originally to describe stable limit cycles in electrical circuits
employing vacuum tubes.

We can also establish a relationship to the FitzHugh-Nagumo-model, a simplified
version of the Hodgkin-Huxley neuronal model that describes the neuronal dynam-
ics in terms of the membrane potential z and a recovery variable that can be iden-
tified with our h. However, we are not going into details here. The point of interest
we want to emphasize by this little excursion is to demonstrate the consequences of
making a system self-referential. In the example, a fixed point system as given by
Eq. (6.14) with parameter h is converted into a relaxation oscillator when adding a
parameter dynamics for h by gradient descending the TLE.
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Appendix 6.A Fixed-Point Flow

We use the learning rule (6.7) in the form

1
ξ 2ε

∆C =−L−2
(
− 1

C
+2αxxy

)
In case that 0 < R < 1 with R = CA, we are below the bifurcation point where
x = y = 0 implying g′ = 1 and ∆C = −εξ 2L−2C−1 = −ξ 2A−2C−3. This means
that C is driven away from C = 0. Note the singularity at C = 0 where the velocity
of the parameter dynamics is diverging. This has to be considered for the practical
application. Slightly above the bifurcation point we put R = 1+ δ , 0 < δ � 1 and
use the approximated fixed point Eq. (3.23)

z2 = 3δ +O
(
δ 2)

which is appropriate since |z| is small. Hence3, L = Rg′ (z) = R
(
1− z2

)
+O

(
δ 2
)

and

L = 1−2δ +O
(
δ 2)

As a consequence, using Eq. (6.6) we get

αx =
1

1−L(x)
= (2δ )−1 +O(1) (6.20)

and

L−2
(
− 1

C
+2εxxy

)
=

(
− A

1+δ
+

3Aδ
δ

)
+O(δ ) (6.21)

= 2A+O(δ )

where xy = Ay2 = Az2 +O
(
δ 2
)

was used.
Moreover, with R � 1 we may approximate the fixed point as z ≈ ±R and4

tanh′ z ≈ 4e−2R , so that L ≈ 4Rexp(−2R) is infinitesimally small, αxxy ≈ A so
that finally we obtain (assuming the noise is infinitesimally small)

3 Again, using a Taylor expansion in lowest order g(z) is substituted by z.
4 The approximation is obtained by writing, in the z > 0 case,

tanh′ z = 4
u

(1+u)2 ,

where u = exp(−2z), and expanding for small u to obtain

tanh′ z = 4u+O
(
u2) .

A similar consideration is valid for z < 0 so that, altogether, in the limit of very large |z| we obtain
tanh′ z≈ 4e−|2z| and tanh′ z≈ 4e−2R for R� 1.



P
e
rs

o
n
a
l 
C
o
p
y6.B Towards the Effective Bifurcation Point 123

L−2
(
− 1

C
+2εxxy

)
≈ 1

16R2 exp(−4R)

(
−A

R
+2A

)
(6.22)

=
A

16R3 exp(−4R)
(−1+2R) . (6.23)

Altogether we obtain the following approximate expressions for the update of C

1
εξ 2 ∆C ≈


A−2C−3 for 0 < R < 1

−2A for R & 1

−A(2R−1)
16R3 e4R for R� 1

(6.24)

with R = AC. The gradient diverges for both R→ 0 and R→∞ so that the parameter
C is driven away from these regions towards the bifurcation point at R = 1. There,
∆C displays a discontinuity, of width εξ 2

(
A−2C−3−2A

)
when crossing the bifur-

cation point from below. Formally the discontinuity is a result of αx being diverging
at R = 1, whereas the state x → 0 when approaching the bifurcation point from
above. The product αxxy is finite but does not match the case when approaching the
bifurcation point from below.

Appendix 6.B Towards the Effective Bifurcation Point

The main reason why we had to assume vanishing noise in deriving the learning
rule was the validity of ∂ z/∂C = x+C∂x/∂C which is fulfilled exactly only at the
fixed points of the deterministic system. With any finite noise, there is always a
region where the assumption is not valid any longer, see Fig. 3.10 so that a special
consideration is necessary for that region. The idea for the correction is drawn from
Fig. 3.10, which demonstrates that the time averaged state variables behave rather
similar to the fixed points of the deterministic system if only we replace the bifur-
cation point with its effective counterpart. In fact, the time average 〈xt〉 is roughly
zero up to the effective bifurcation point Reff and after that we have two stable fixed
points, which are behaviorally similar to the deterministic ones. The main difference
is that there is not any longer a classical pitchfork bifurcation but we have a jump at
the effective bifurcation point. Based on this behavior, we put

αx =

{
1 for R≤ Reff

(1−L(〈x〉))−1 for R > Reff
(6.25)

so that αx will always be finite. If using this in the learning rule we may simplify
the latter further by replacing αx with its maximal value, i. e. its value at or slightly
above the effective bifurcation point, since this influences only the speed of the
learning but not the position of the equilibrium point (where αx is maximal). So, we
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can replace the value of αx with a constant value denoted by α chosen such that the
stationary state of the learning dynamics

1
εE

∆C =
1
C
−2αxy (6.26)

is reached at the effective bifurcation point.
This is made more transparent by considering the equilibrium point, which is

defined by ∆C = 0, explicitly so that, using Cx = Ry = Rg(z),

1 = 2αRg2 (z) .

We consider this at the fixed point (state dynamics is converged), i. e. with the addi-
tional information z = Rg(z) and obtain numerically with g(z) = tanhz the solution
z≈ 0.77 and R≈ 1.19 in the special case α = 1, see Sect. 3.3.4 (p. 38). We get an
analytical solution by using the expansion for the fixed point z =

√
3δ +O(δ ) (see

above), putting again R = 1+δ . Using that in

1 = 2αRg2 (z)≈ 6αδ

we obtain

Rα ≈ 1+
1

6α
, z≈

√
1

2α

where z ≈
√

3δ was used for the final step. This means that we can shift the sta-
tionary point of the learning dynamics by choosing α appropriately. In Sect. 3.3.4
we derived the position of the effective bifurcation point as a function of the noise
strength. In particular, using Eq. (3.49) we obtain Eq. (6.10).

Appendix 6.C Frequency of Hysteresis Oscillations

Let us assume that A = 1 and C in Eq. (6.12) has already reached its limit cycle
regime so that we may give it a fixed value of C = 1+ δ with 0 < δ � 1. With δ
small, we may assume that the amplitude of the oscillations of both x and h is small,
so that we may linearize Eqs. (6.11, 6.13) to get

∆xt+1 = δxt +ht (6.27)
∆ht+1 =−2ε ((1+δ )xt +ht) (6.28)

with Jacobian matrix

J =

(
δ 1

−2(1+δ )ε −2ε

)
.

The eigenvalues of J are
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µ1,2 =−ε +
1
2

δ ± 1
2

√
4ε2−4δε +δ 2−8ε

In the limiting case of very small δ (δ > 2ε though, otherwise damped oscillation)
we obtain

µ1,2 =−ε±
√

ε2−2ε +O(δ )

so that the frequency ω of the oscillations is in the limit of small ε

ω =
√

2ε +O
(

ε
3
2

)
. (6.29)
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Symmetries, Resonances, and Second Order
Hysteresis

Abstract: This chapter is a continuation of the preceding chapter to two-dimensional sys-
tems. We will identify new features of our self-referential dynamical system again indepen-
dently of any specific embodiment effects. The additional dimension opens the possibility
for state oscillations, where the entanglement of state and parameter dynamics will lead to
interesting phenomena and induces behavioral variability. The most prominent effects are
driving oscillatory systems into a second order hysteresis (by a self-organized frequency
sweeping effect) and getting into resonance with latent oscillatory modes of the controlled
system.

In continuation to the previous chapter we study concrete features of our self-
referential dynamical system in two-dimensional idealized worlds. The one-dimen-
sional sensorimotor dynamics has revealed already some basic features of homeo-
kinetic control. However, these examples have shown merely the situation with a
fixed point as the central dynamical pattern. Additional dimensions in the state dy-
namics bring new patterns into play, in particular oscillatory ones. Generic structures
emerge already in the 2D case, which we are going to discuss in some detail now.
The parameter dynamics will be seen to modify the original system dynamics in a
complex but systematic way.

7.1 Properties of the Two-Dimensional Sensorimotor Loop

7.1.1 Two-Dimensional Loop

Let us repeat first the generic dynamical system Eq. (3.7), i. e.

xt+1 = ψ (xt)+ξt+1 (7.1)

now with xt ∈ R2, the function ψ : R2→ R2 being given by

ψ (x) = Ag(Cx+h) (7.2)

127
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so that the two-dimensional system with g(s) = tanh(s) and A = I reads in detail
(we raise the time index when writing the vectors componentwise)

xt+1
1 = tanh

(
C11xt

1 +C12xt
2 +h1

)
+ξ t+1

1 (7.3)

xt+1
2 = tanh

(
C21xt

1 +C22xt
2 +h2

)
+ξ t+1

2 (7.4)

This system, with fixed parameters without noise, was studied in the context of
recurrent neural networks [123, 124] where the dynamics for the complete parame-
ter space and the resulting bifurcations are presented. Its ability to produce various
waveforms makes it very useful as central pattern generator in the context of evolv-
ing gates for bipedal [70], four-legged [101] and six-legged [99] walking machines.
The latter two used a reduced parametric form of Eqs. (7.3, 7.4), which has only
two parameters a =C11 =C22 and b =C21 =C12 to produce sinusoidal waveforms.
In [86] a key-framing technique was introduced to easily tune the parameters of the
SO(2)-network to produce a desired output wave. The hysteresis properties were ex-
ploited in [74] and in [177] reflex oscillators were created for single leg controllers
in a stick insect model.

The examples where chosen for illustration before making the system self-refer-
ential by introducing the homeokinetic learning (see next section), as they show the
wealth of the dynamics of this system, as well as applicability to technical realiza-
tions.

7.1.2 Bifurcation Scenario

The first step in the analysis consists in finding the eigenvalues of the Jacobian
matrix

L = AG′ (z)C (7.5)

with z = Cx+ h and the diagonal matrix G′ (z) = diag[g′1,g
′
2] where g′i = g′ (zi) as

before. It proves convenient to write the eigenvalues in terms of the trace (Tr) and
the determinant (Det) of the matrix as

λ1,2 =
1
2

(
Tr±

√
(Tr2−4Det

)
. (7.6)

The dynamics is asymptotically stable if the two eigenvalues lie inside the unit circle
in the complex plane, however it bifurcates if an eigenvalue λ—during parameter
variation—leaves the unit circle. Depending on the exact location where λ (Tr,Det)
crosses the unit circle, the following three bifurcation types can be distinguished:

• Saddle node (fold) bifurcation λ = 1: It creates or destroys a pair of fixed points.
• Period doubling(flip)bifurcation λ = −1: It creates or destroys a period-2 cycle

from a fixed point.
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• Neimark-Sacker bifurcation1 λ = exp(±iω) where exp(±iω) 6= 1 for both signs:
It creates an asymptotically stable invariant curve with periodic or quasi-periodic
dynamics on it, depending on whether the rotation number is rational or irra-
tional, see [92, 123] and the discussion below.

-1.0 -0.5 0.5 1.0 1.5

-2

-1

1

2

Tr

Det

Period doubling

Saddle node
Neimark-

Sacker

Fig. 7.1: Bifurcations in the 2-D system. Displayed is the trace (Tr) and the determinant
(Det) of the Jacobian L. The domain of stability of the fixed point x∗ is given by the blue
triangle bounded by the three lines Tr−Det = 1, Tr+Det =−1, and Det = 1. The system
is able to perform oscillations in the red domain (region of nonzero imaginary part of the
eigenvalues).

According to the above definitions, the region of stability is defined in the (Tr, Det)
plane by a triangle bounded by the three straight lines Tr−Det = 1, Tr+Det =
−1, Det = 1, see Fig. 7.1. For instance, along the line Tr+Det = −1 (on which
the eigenvalues are real and one of them is −1 ) there will be a period-doubling
bifurcation. Along the line Det = 1, |Tr| < 1 (on which the two eigenvalues are
complex and of modulus 1), there will be Neimark-Sacker bifurcations from a fixed
point attractor to a periodic or quasi-periodic attractor, see [161].

7.1.3 Properties of SO(2) Dynamics

For the rest of the chapter we stick to our toy world given by Eqs. (7.3, 7.4) that
we call the SHORT CIRCUIT in the LPZROBOTS simulator. A specific form of this
two-dimensional dynamics is obtained if C is given by

C = uO(φ) (7.7)

1 Neimark-Sacker bifurcation is the discrete counterpart of the Hopf bifurcation.
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where O is an orthogonal matrix and u > 0 a scaling factor. In particular, we choose
O as a special orthogonal matrix

O(φ) =
(

cosφ −sinφ
sinφ cosφ

)
(7.8)

which rotates a vector by an angle φ . These matrices are closed under multiplication
with each other and the inverse operation2 so that they form a group called the spe-
cial orthogonal group SO(2). With this specific choice of C, the dynamics becomes
a nonlinear oscillator if u > 1, see [124]. Interestingly, we will find below that under
various conditions our learning dynamics drives the parameters to just this structure.

Let us consider at first the case of small values of x so that the system Eq. (7.2)
can be linearized (g(z)≈ z) and (dropping the noise)

xt+1 = uO(φ)xt . (7.9)

This means that the state vector is rotated in each step by the angle φ and multiplied
by the factor u. Choosing the starting vector as

x0 =

(
cosθ
sinθ

)
in this linear setting the state vector after t iterations will be

xt = ut
(

cos(θ + tφ)
sin(θ + tφ)

)
(7.10)

meaning that the vector is rotated by the angle tφ and scaled by ut .
If there is an integer k with 2π = k, the state vector returns to its initial direction

after k steps so that we have a periodic behavior with frequency ω = 1/k or

ω =
φ
2π

. (7.11)

If there is no such k we have a quasi-periodic behavior since the angle of the state
vector never returns exactly to its initial direction.

Equation (7.10) also directly shows that the length of the state vector is decreas-
ing (damped oscillation) if u < 1 and increasing if u > 1. The case of u = 1 is of
special interest since the amplitude is conserved under the dynamics, i.e. the vec-
tor rotates with constant length and we have a periodic or quasi-periodic oscillation
with constant amplitude3.

2 The multiplication of two matrices O(φ1)O(φ2) is again a of the same form, namely O(φ1 +φ2).
For the inverse holds the same: O(φ)−1 = O(−φ).
3 This is a good point to explain why we choose the special orthogonal matrix, which form a
subgroup, defined by DetO = +1, of the group of all orthogonal matrices. Actually, oscillatory
behavior can also be achieved when using the orthogonal matrices with determinant−1. The reason
is that the latter not only rotate the state vector by some angle but also invert it. In a robotic
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The present considerations are valid for the linearized dynamics. In the nonlinear
system with u > 1 the length of x increases so that, very soon, the linearization is not
longer valid. However, the expansion of x is confined by the nonlinearity introduced
by the function g(Cx+h) in Eq. (7.2) so that the frequency is still roughly given by
Eq. (7.11). More details will be given in numerical simulations below.

7.1.4 The Effect of the Bias

Before we turn to the learning dynamics, let us consider the effect of a fixed bias
term h on the oscillatory dynamics. Remember from the one-dimensional sys-
tem Sect. 3.4, that the bias changes the stability of the fixed points. In the two-
dimensional system we observe a change in the shape and frequency of the non-
linear oscillations in the first place, but the most important effect is the break
down of the oscillations if h exceeds a critical value. For illustration we use
C = 1.2O(π/30), see Eq. (7.7), (C11 = C22 ≈ 1.2 and C12 = −C21 ≈ −0.125) cor-
responding to ω = 1/60. In numeric simulations, see Fig. 7.2, we observe without
bias (h1,2 = 0) an oscillation with the frequency ω ≈ 1/80. Due to the nonlinearities
there is a deviation from the expected 1/60. Already when using h1,2 = 0.02 the
oscillation frequency decreases to ω ≈ 1/100. For h1,2 = 0.04 the oscillations are
destroyed and the state settles into a fixed point. This most sensitive dependence
of the oscillations on the value of the h vector was already observed in [64], see
also [65] and was shown to be useful in robotics for triggering oscillatory behav-
ior depending on context. Interestingly, the authors found that the oscillatory region
predicted by the theory is much larger than that obtained by computer simulations.

Our numerical studies corroborate these findings. We will see further below that
including the learning dynamics of h into the combined system of state and param-
eter dynamics has a tremendous effect onto the behavior of the system.

7.2 Homeokinetic Learning

Let us now study the homeokinetic learning rules in two dimensional systems, es-
pecially in the short circuit setup. We will elaborate on different effects and provide
analytical and numerical results. We will use the learning rules based on the time-
loop error as derived in Sect. 5.2.2, see Eqs. (5.22, 5.23)

1
ε

∆Ci j = µiv j− εiyix j (7.12)

1
ε

∆hi j =−εiyix j (7.13)

application this would mean that the state variable and with it the controller signals change sign in
every time step, which might lead to the destruction of the robot.
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Fig. 7.2: The influence of the bias h on the stability of a limit cycle of an SO(2)
controller. C = 1.2O(π/30) is a supercritical rotation matrix, the initial condition is x1 =
x2 = 0.01. (a) shows the non-linear oscillatory dynamics without bias (h1 = h2 = 0); (b)
bias h1 = h2 = 0.02 changes the shape of the oscillation; (c) bias h1 = h2 = 0.04 suppresses
the oscillation.

with v = L−1ξ , εi = 2µi (Cv)i, χ =
(
LL>

)−1 ξ , and µ = G′ A>χ . In most of the
applications we use the average gradient as introduced in Sect. 5.C with infinitesimal
noise in the sense explained there.

In the nonlinear system there are many different dynamical regimes already in
the two-dimensional case We will show in the following that there are different
kinds of limit cycles, corresponding to both regular and irregular oscillations, and
moreover that there are also metastable limit cycles. As in the one-dimensional case,
the inclusion of additional parameters, the bias, deeply changes the nature of the
combined dynamics and introduces completely new phenomena based on higher
order hysteresis effects.

7.2.1 State-Parameter Dynamics

At first we will confine ourselves to the case that the bias of the neurons is equal to
zero so that the full parameter dynamics is given by Eq. (7.12). We will be working
with the average gradient, see Sect. 5.C (p. 101), in the example so that the combined
system is a deterministic self-referential dynamical system in 6 dimensions. Such a
system can show the full scale of behaviors known from deterministic dynamical
systems ranging from fixed points (in 6-d space) to fully developed chaos. Nev-
ertheless, the range of behaviors realized by this system is restricted somewhere in
between these alternatives. The heuristics developed in Sect. 5.3 proves very helpful
in understanding the emerging behaviors. In particular we will retrieve the attrac-
tive properties of the SO(2) symmetry group reflected by the plateaus in the error
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landscape and the entanglement between state and parameter dynamics in weak and
strong forms.

We have seen above that the case of SO(2) networks is of special interest since it
produces oscillations. Let us therefore ask how this specific structure interacts with
the learning dynamics.

(a)
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Fig. 7.3: Frequency drift to period-4 cycle. The panels (a,c) show the evolution of the
controller matrix C and the rotation angle φ , (b,d) display the corresponding state vector
x initialized with φ = π/3 (60◦) (a,b) and initialized with φ = 2π/3 (120◦) (c,d). In both
cases the system very rapidly self-regulates towards a Neimark-Sacker bifurcation with an
ensuing slower drift towards a stable period-4 cycle. The color code in (b,d) corresponds
to the time intervals marked with respective colored bars in (a,c). Settings: ε = 0.02,
average gradient, infinitesimal noise.
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7.2.2 Oscillatory Behavior

Most of the observed dynamical patterns are oscillatory in nature. This can be at-
tributed to either the fact that the controller matrix C is proportional to a rotation
matrix or to a strong entanglement like in the case of the hysteresis oscillations in
the one-dimensional system considered above. Let the controller matrix C be given
by a scaled rotation matrix, i. e. C = uO(φ) with O given by Eq. (7.8). A first obser-
vation is based on the explicit expression of the error

E = ξ>
1

LL>
ξ = ζ>

1
CC>

ζ (7.14)

where ζ = (AG′)−1 ξ . With the above C we find CC> = u2I (unit matrix). The rota-
tion angle only appears in the nonlinearities (G′), such that in a linear approximation
the error is invariant to the rotation angle. The influence of the nonlinearities is kept
weak by homeokinetic learning (since the neurons are not sensitive in the satura-
tion region) so that the error landscape is in fact showing a plateau corresponding to
the SO(2) symmetry group that is heated up slightly by the residual effects of the
nonlinearities in the sense described in Sect. 5.3.

As a consequence, when starting with C in a specific but very large region of the
space of all C matrices, we observe a rapid convergence towards an SO(2) structure
with ensuing slow drift in the SO(2) subspace due to entanglement provided by the
nonlinearities. The direction of this drift is depending on the starting condition as
can be seen in the following findings.

Experiment 7.1: Oscillatory behavior in 2D
When you start the simulation Oscillatory behavior in 2D short-circuit you won’t see any graphics in this simulation.
Instead the GUILOGGER opens and displays the evolution of the state and the parameters. You can interrupt by
pressing <Ctrl>+C and change parameters. With
>rotation=φ
you can re-initialize the controller matrix with the specified angle φ (in degree). Try rotation= 30, 60, 90, and 120.
Try also to randomize the controller matrix with random=1 several times.

In computer simulations we observe that there is a critical rotation angle φc = π/4
acting as a repeller in this metastability scenario. Starting a simulation with φ > φc
drives the system towards the period-4 cycle where φ = π/2. You can try it yourself
in Experiment 7.1. In concrete runs, we start with the matrices C = uO(π/3) and
C = uO(2π/3). The evolution of the state and parameters dynamics is depicted in
Fig. 7.3. As mentioned already above, the approach towards the period-4 cycle is
also observed when starting from a large set of matrices that are not in the SO(2)
group. Instead, quite generally in many experiments one observes a very rapid con-
vergence towards an SO(2) structure with an ensuing slow increase of φ towards
the period-4 cycle so that the latter is found to have a very wide basin of attraction.

We can understand this theoretically, at least the fact that the learning is stationary
at this point. Qualitatively this can be directly read from the expression Eq. (7.14)
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of the error. As seen from Fig. 7.3, in the converged situation, the state vector is
jumping between the corners of the square, meaning that the factors g′i occurring in
the vectors ζ of the error are always the same since g′ (z) = g′ (−z) so that learn-
ing and state dynamics decouple (no entanglement) and stationarity is reached, see
Fig. 7.4a.
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Fig. 7.4: Evolution of the time-loop error E for frequency drifting. (a) Drift to the
period-4 cycle. A part of the time interval of experiment 46◦→ 90◦, see Fig. 7.5, is shown.
The normalized error E/‖ξ‖2 (averaged over 10 steps) is invariant to the rotation angle
unless close to the period-4 cycle. There is a slow drift to that situation and the error
jumps to a higher plateau in the transition region. The state dynamics gets locked in this
limit cycle, so that the parameter dynamics cannot decrease the error further. (b) Drift
towards low frequencies. Corresponds to experiment 44◦→ 0◦, see Fig. 7.5. As the angle
approaches zero, the normalized error starts to oscillate and becomes smaller except for
the peaks induced by the fixed-point switching of the x dynamics, see Fig. 7.6(a). Settings:
average gradient, deterministic dynamics, ε = 0.001.

What happens if we initialize C with a smaller rotation angle, φ < φc? It turns out
that the learning dynamics drives φ systematically down to lower rotation frequen-
cies. The learning dynamics for different starting conditions is illustrated in Fig. 7.5
in the determinant-trace plane, as introduced in Sect. 7.1.2 and the evolution of the
error can be followed in Fig. 7.4(b).

When starting with subcritical values of u (the Frobenius norm of the C matrix)
we also observe that the system self-regulates towards the Neimark-Sacker bifurca-
tion and further towards the slightly supercritical value of about 1.2. If the rotation
angle is not small, than the state dynamics performs an oscillation and gets largely
independent of the gradient descent on the time-loop error (weak entanglement),
apart from the slow drift effect, that drives the rotation angle slowly towards either
0 or π/4 depending on the initial conditions.

However, different from the period-4 cycle that corresponds to a high frequency
oscillation, the drift towards lower frequencies is ending in a kind of phase transition
to a new regime where so to say the gradient descent takes over and an intensive
entanglement of state and parameter dynamics is established, see the following.
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44◦→ 0◦

46◦→ 90◦

120◦→ 90◦

Fig. 7.5: Learning dynamics of the controller matrix in Det−Tr (determinant-trace)
plane. The evolution of the controller matrix C for different initial conditions is shown.
The curves are labeled with the initial rotation angle and the stationary rotation angle
(φt=0 → φ ?). Settings: average gradient, for the first three lines: u = 0.1, ε = 0.001. The
last line (120◦→ 90◦) corresponds to the experiment Fig. 7.3(c),(d).

7.2.3 Low Frequency Oscillations

In order to study the new dynamical regime, let us start in the following with C = I
if not otherwise stated. The learning dynamics first increases the diagonal elements
of C to a value of around 1.2, as before. However, the off-diagonals do not develop
opposite signs as in the SO(2) picture but start oscillating with equal values so that
the state-parameter dynamics enters a common periodic oscillation. Interestingly,
this can be understood by the situation in 1-d with bias, i. e. each neuron uses the
other one as a tonic input corresponding to a bias term that can be regulated by
the off-diagonal connection. This can work only if the neurons synchronize their
activities and this is just what happens with small values of the learning rate ε , as
depicted in Fig. 7.6(a). If the learning rate is increased a different situation occurs,
see Fig. 7.6(b), namely that one neuron remains in its fixed point and the other one
performs an oscillation. This resembles the one-dimensional case with bias. The
break down of the former regime can be attributed to the synchronization necessary
for the common oscillation scenario and this is probably only operational if the time
scale set by ε is long enough.

This is not the full spectrum yet. Increasing the learning rate even more we ob-
serve a switching of the roles of both neurons from time to time, see Fig. 7.7(a).
Finally an irregular and frequent switching occurs as shown in Fig. 7.7(b).

7.2.3.1 Remark
We would like to emphasize that this spectrum of different dynamical patterns is
achieved in the deterministic state-parameter system, i. e. with the average strength



P
e
rs

o
n
a
l 
C
o
p
y7.2 Homeokinetic Learning 137

(a) ε = 0.001

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
x1

x 2

(i) (ii)

1
1.2
1.4

-0.3
0

0.3

-1
-0.5

0
0.5

1

0 20 40 60 80 100 120 140
time [102 steps]

C11 C22

C12 C21

x1 x2

(b) ε = 0.005

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
x1

x 2

(i) (ii)

1
1.2
1.4

-0.3
0

0.3

-1
-0.5

0
0.5

1

0 5 10 15 20 25 30
time [102 steps]

C11 C22

C12 C21

x1 x2

Fig. 7.6: Deterministic state-parameter dynamics in the SHORT CIRCUIT setting.
(a-b) Dynamics with different learning rates (see Fig. 7.7 for a continuation); (i) phase
plots of the state vector x; (ii) evolution of controller parameters Ci j and state x. Settings:
average gradient, xt=0 = (0.01,10−5)> and deterministic dynamics.

σ2 of the noise going to zero and the learning rate to infinity so that the product
ε = σ2εc stays constant, see Sect. 5.C for details. In the deterministic system, the
emergence of the irregular switchings in the case of high ε seems a little astonishing,
but they can be considered as an indication for a specific kind of deterministic chaos
in the 6 dimensional dynamical system. Interestingly, similar behaviors are also
observed if we add some noise to the state dynamics. Figure 7.8 shows that, with
ε kept fixed and very small, the noise introduces similar effects as observed in the
deterministic system by increasing the learning rate ε . Probably, we may consider
ε in the present context as a parameter regulating the distance to the chaotic regime
of the state-parameter dynamics but this needs still clarification by considering the
Lyapunov exponents of the 6 dimensional system.
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(b) ε = 0.011
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Fig. 7.7: State-parameter dynamics in the SHORT CIRCUIT setting — continuation.
See Fig. 7.6 for description. The color code in (a)(i) corresponds to the time intervals
indicated by the colored bars at the bottom of (a)(ii).
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Fig. 7.8: Injecting sensor noise in the SHORT CIRCUIT setting. (a) no noise (same as
in Fig. 7.6(a)); (b-d) increasing noise strength. The noise induces a switching similarly
to the one observed when increasing the learning rate, see Fig. 7.7. Settings: average
gradient, noisy dynamics, and ε = 0.001.
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7.2.4 Theory of Oscillatory Modes∗

The emergence of oscillatory modes is a ubiquitous phenomenon in many of the ap-
plications done so far. The reasons for that can be seen from different perspectives:
At a general level we identified the drive for oscillations in the invariance of the pri-
mary gradient (Sect. 5.2.1) of the TLE to rotational transformations, see Sect. 5.3.5.
There we considered the linear system with the Jacobian matrix being a rotation
matrix (L ∈ SO(2)). However, in order to prevent the explosion of the system dy-
namics we had to introduce there an artificial confinement. Let us here substantiate
these considerations by showing the self-amplification and the confinement in the
nonlinear setting and how oscillatory modes persist.

Let us start with the average gradient dynamics (Sect. 5.C) for the sake of sim-
plicity, and consider moreover the case that the C matrix already is of the orthogonal
structure, i. e. it is a rotation matrix O(φ) multiplied by a factor u, so that CC>= u2I.
Note that the Jacobian matrix L is typically not a scaled rotation matrix due to the
non-linearities. Introducing C into Eq. (5.48) through Eq. (5.50) with i. i. d. noise,
yields the following learning rule4

u2

ε
∆C = G′−2

(
1

C>
−2u2yx>

)
. (7.15)

In Sect. 7.A.1 we show that in the average over a time window (exceeding the
length of a period) we obtain

∆C ∝
(
1−2κu2)C (7.16)

assuming additionally that the g′ factors are all equal. A discussion may be found
in Sect. 7.A.2 (p. 150). κ is an empirical constant proportional to ‖x‖. Using C =
uO(φ) this is an equation driving just the norm u of C towards a stationary value
reached at 1 = 2κu2.

The first point to note is that the update stays in the space of orthogonal matri-
ces even in the nonlinear case so that the assumption is corroborated and we may
derive the following conclusions on the behavior of the matrix elements. Firstly we
see from this expression, that the matrix elements increase by absolute value when
starting with a C matrix normalized such that 2κu2 < 1. Increasing ‖C‖ increases
‖x‖ and hence κ so that the diagonal elements become stationary if 2κu2 = 1 is
reached. As it turns out, this is the same condition as in the 1D case revealing a self-
regulation towards a limit cycle regime slightly above the Neimark-Sacker5

bifurcation point. Moreover, the exact position of that regime can be defined by
the α parameter entering the general learning rules Eqs. (5.22–5.24). This is an-
other justification for using the α parameter in more general situations than the
one-dimensional case where it was introduced.

4 Proof: With A = I and LL> = u2G′2 we have ∆C = εu−2G′−2
(
C>
)−1 − εyx> with ε =

2εu−2G′−2, which is Eq. (7.15).
5 The Neimark-Sacker bifurcation is the discrete counterpart of a Hopf bifurcation.
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This self-regulation mechanism is well confirmed by the above experiments,
e. g. Fig. 7.5. However, the experiments also reveal that, on a (much) longer time
scale, the frequency of the oscillations changes. Depending on the initial condition
for φ we observe a systematic drift either to lower angles or to the period-4 cycle.
The explanation of the drift effects is found in the existing correlations between
the terms g′ (in G′) and the state x, which have been omitted in the transition from
Eq. (7.15) to Eq. (7.16). The treatment of these terms is more involved so that we
leave this to future work. Nevertheless, we can understand why the period-4 cycle
is stationary: the correlations between the nonlinearity and the state vanish and thus
there is no drift, see Sect. 7.A.2 for details.

7.3 Second Order Hysteresis

In the one-dimensional system we have seen that the inclusion of the bias dynamics
introduces an hysteresis effect, which change the fixed point dynamics into a limit
cycle. Similar effects are to be expected in the two-dimensional case. In order to
get some systematics into the phenomena we at first keep the controller matrix C
fixed and study the effect of updating the bias h only. After that we come to the full
dynamics, i. e. updating both C and h by Eqs. (7.12, 7.13), to discover the enormous
enrichment of the state-parameter dynamics by the inclusion of the adaptive bias.

7.3.1 Bias Dynamics and SO(2) Oscillations

We have seen in Sect. 7.1.4 that in an SO(2) network, the bias h can be used as
a kind of switch for changing between oscillatory and fixed-point behavior. Let us
now consider such a network but with h changed by the parameter dynamics of
homeokinetic learning as defined by Eq. (7.13). This results in a novel phenomenon:
the coexistence of two limit cycle attractors with different frequencies and basins of
attraction defined by regions of different size in x-h space. An example is given in
Fig. 7.9, depicting the behavior for C = uO(φC) with O(φ) defined in Eq. (7.8). We
choose the rotation angle as φC = π/90 so that the state oscillates with a period of
180 steps, with some deviation depending on the strength of the nonlinearity, see
Sect. 7.1.3 (p. 129). How is it possible that there are oscillations with two different
frequencies observed?

For a discussion, we introduce the rotation angle φx of the state vector xt in one
time step. The size of φx is obtained empirically by finding the frequency of the
nonlinear oscillations (in our case by counting the zero crossings of the state vari-
ables) its sign being defined by the phase relation between the components of the
state vector xt . In the bias free dynamics we have φC ≈ φx if the nonlinearities are
not too dominant so that the state vector indeed follows the rotation dictated by C.
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Fig. 7.9: Frequency switching by bias dynamics. (a) Bias h, rotation angle φC of con-
troller matrix C and angle φx calculated from the state x; (b) State x. The controller matrix
was fixed to C = 1.2O(φC) with φC = ±π/90 (±2 degree). Up to time 7 (700 steps) the
bias dynamics was disabled and an oscillation following the rotation matrix C is observed
(nonlinearities cause small deviation: φx ≈ π/105). Then the bias dynamics was switched
on (ε = 0.0005) and the frequency increases (φx ≈ π/60). Here we have a weak entangle-
ment between state and parameter dynamics. At about time 15 the rotation angle of the
controller matrix is inverted. The bias dynamics continues to rotate the state in the same
direction as before but with a lower frequency (φx ≈ π/165), such that we speak from
a strong entanglement. After switching back the high frequency regime is entered again.
Settings: Average gradient, deterministic dynamics, ε = 0.0005.

The different nature of these two scenarios is understood by looking at the phase
relation between φx and φC. In the high frequency case we have φx & φC so that both
vectors rotate into the same direction, whereas in the second case the signs of φx
and φC are different. In the simulation we have switched between both behaviors by
inverting the rotation angle of the C matrix from φC = π/90 to φC = −π/90 and
back. In both cases the state continues to rotate in positive direction (φx > 0) but
with a much lower rotation frequency. Obviously, the phase relation influences the
interplay between the state dynamics and the h dynamics in an essential way and is
therefore responsible for the different frequencies of the limit cycle attractors.

The effect can tentatively be rooted back to the different strength of the entangle-
ment between state and parameter dynamics. It is a recurrent pattern that the latter
can get hold of the former if the state dynamics is or can be kept slow. Obviously
this is happening if the phase relations are appropriate. The decisive influence of the
phase relations on the behavior of the system will be seen to play an essential role
also in the more complicated cases considered below. Thus this seems to be an es-
sential ingredient of the present approach. In particular, one may use the phase shift
in order to switch between these two limit cycle attractors. In other words this opens
the possibility of the robot to react in a definite way to environmental influences.
In fact, if the system is in one of its attractors, a simple shift in phase between the
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sensor values may lead to a switching of the frequencies making the robot to try a
different dynamical regime.

These findings can be seen as another piece of a pattern in the interplay between
state and parameter dynamics. In the in phase regime, the state dynamics cases the
error to be essentially on the SO(2) plateau of its landscape, so that perturbations by
the parameter dynamics are weak (weak entanglement). In the special case it leads
to a slight frequency increase. The anti-phase regime is mainly dominated by the
parameter dynamics, managing to rotate the state vector into the direction opposite
to that prescribed by the controller matrix C (strong entanglement). As it can be
expected, this regime is taking place only if the state is not changing too fast since
otherwise the parameter dynamics can not take over. Interestingly, this taking over
has to be initiated from outside (e.g. by perturbations or by a particular situation) by
setting the phase relations accordingly.

7.3.2 Frequency Sweeping and Hysteresis in Frequency Space

We are now going to study the combined dynamics of state and parameter vari-
ables, i.e. that of x, C, and h, which takes place in the now 8-dimensional space. We
initialize as before with C = I, h1,2 = 0 and x = (0.01,10−5)>.

As the numerical studies reveal, there are different dynamics depending on the
learning rate ε . If using a very small learning rate, the state-parameter dynamics is
found to converge after some time to a periodic limit cycle with a low frequency. The
simulation results are displayed in Fig. 7.10. Interestingly, the C matrix develops
into an SO(2) structure with relatively high rotation angle (φC ≈−π/20). The actual
oscillation of the state occurs however with φC ≈ π/300, determined by the bias
dynamics as in the previous section. Note the emerging anti-phase relation of h
and x w. r. t. C in the regime of strong entanglement between state and parameters
dynamics.

The most interesting effect of the combined dynamics was discovered from com-
puter simulations when using larger learning rates where the system is found to
wander through its different frequencies in a periodic manner. For this reason we
call it the frequency sweeping effect. In order to understand how this effect is pro-
duced we consider a typical simulation as given in Fig. 7.11. The first observation
is that, most of the time, the matrix C realizes an SO(2) structure. However now the
rotation angle φC is not constant but displays also a periodic behavior on a much
larger time scale.

When considering the state dynamics it does not correspondingly change the
frequency but instead, similarly to Fig. 7.9, there are again two possible relations
between the signs of φC and φx. However now, the rotation angles φx and φC are
varying in size over a very large range and, as the Fig. 7.11 shows, the phase rela-
tion may be considered as a kind of hysteresis parameter. Different from the usual
hysteresis systems, this is not a system parameter but something that is emerging in
the phenomenon itself. Therefore we call this a second order hysteresis. Like with
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Fig. 7.10: Combined dynamics of C and h for low learning rates. (a) Controller pa-
rameters C and h, rotation angle φC (right axis) of controller matrix C and angle φx (right
axis) calculated from the state x; (b) State x. The controller matrix C develops into rota-
tion matrix with negative rotation angle (φC). However, the combined dynamics reaches a
periodic orbit with a fixed low frequency with positive rotation angle (see φC and φx). In
this case the dynamics actually converges (long term behavior checked). Settings: Average
gradient, deterministic dynamics, ε = 0.0005.

the hysteresis oscillators introduced in Sect. 6.3 this new hysteresis parameter is
swept by the learning dynamics itself and not by hand from outside.

The time-loop error during such a sweeping mode is displayed in Fig. 7.12. As
we know from Sect. 7.2.3, the error is essentially the same for all high frequency
modes. If, however, the phase of the state does not match the controller matrix (φx
and φC differ in sign) the error shows a different dynamics. In this regime the state
oscillations are strongly influenced by the bias dynamics. Thus the error starts to
fluctuate and for very low frequencies the error is decreased. In this period the pa-
rameter dynamics has enough time to decrease the error while each component of
the state is kept close to its fixed point. Then the state hops again such that the error
rises as observed before.

7.3.3 Frequency Sweeping in Real Systems

The sweeping mode discussed above was found in the idealized world system with
infinitesimal noise. Most interestingly, the phenomenon is very robust and can be
found also in more complicated robotic systems with homeokinetic control. In par-
ticular, we may consider the BARREL with its dominating embodiment effects,
see Experiment 7.2. As observed in the experiment, where we enable model learning
(Eqs. (4.5, 4.6)), under widely differing conditions the BARREL shows the sweep-
ing effect with alterations due to its specific embodiment. In a typical experiment
we observe that the velocity (and thus the rotation frequency) is steadily increasing
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Fig. 7.11: The frequency sweeping effect. Same settings as in Fig. 7.10 with higher
learning rate. (a) Controller parameters C and h; (b) Rotation angle φC of controller ma-
trix C and rotation angle φx calculated from the state x; (c) State x in a small interval of
time. The controller matrix takes the SO(2) structure, running through a wide range of
rotation angles (b) in a periodic manner. Up to time 7 the bias dynamics slows the oscil-
lations down due to the anti-phase relation as explained in Fig. 7.9. In the slow mode, the
destabilization drive of homeokinetic learning is increasing steadily. Eventually a regime
of maximum instability is reached with ensuing switching of the phase relation so that the
system jumps to the high frequency regime (as dictated by C) at time 7 and 23, see (c).
Settings: Average gradient, deterministic dynamics, ε = 0.005.

up to a maximum value, then it decreases, inverts sign and so forth. As a result the
velocity of the robot is oscillating periodically at a slow timescale, as displayed in
Fig. 7.13. Here we see clearly how the inertia of the robotic system influences the
generation of behavior. In contrast to the sharp frequency jumps observed above
(Fig. 7.11) we find here a smooth transient as it can be seen in Video 7.1 and/or
reproduced by doing Experiment 7.2.

Video 7.1: Sweeping mode.
Behavior of the BARREL with
homeokinetic control, see also
Fig. 7.13 for details. The video
can be watched at http://
playfulmachines.com.

http://playfulmachines.com/videos.html#vid:barrel:sweeping
http://playfulmachines.com/videos.html#vid:barrel:sweeping
http://playfulmachines.com/videos.html#vid:barrel:sweeping


P
e
rs

o
n
a
l 
C
o
p
y7.3 Second Order Hysteresis 145

1000 1500 2000 2500

-0.04

0.

0.04

0 1000 2000 3000 4000 5000
0

2

4

6

8

-
Π

8

0

Π

8

time @10 stepsD

Φx

E � °Ξ´
2

Fig. 7.12: Evolution of the time-loop error E for the frequency sweeping mode. A part
of a full sweeping cycle is displayed. In comparison to Fig. 7.11 a much lower learning
rate was used to have a better separation between state and parameter dynamics. The
rotation angle φx indicates the current oscillation frequency of the state, note also the
inset. The error is nearly constant during the SO(2) scan with matching phase relation at
the beginning and the end of the shown time interval. During the time with anti-phase
relation (time 900–2850) the error fluctuates and eventually is lowered significantly when
the oscillations become very slow. Then the phase relation inverts and thus the error rises
and relaxes to the plateau. Settings: average gradient, deterministic dynamics, ε = 0.001.

Experiment 7.2: Homeokinetic control of BARREL

The simulation Homeokinetic control of BARREL starts with the robot at rest. Observe the generated behavior and the
parameter dynamics with the GUILOGGER. Remember, that you can change the simulation speed with ‘+’/‘-’. Try
different learning rates for instance by entering >epsC=value
You may re-initialize both the parameters of the controller and the forward model randomly as described in Exper-
iment 3.2. For many conditions the dynamics will come back to the sweeping behavior, but there are also initial
conditions (especially if the Det(C)< 0) where the dynamics will lead to strange and often fixed behaviors.
In order to exert external forces to the barrel use either the <Ctrl>+<left Mouse button> or the <Ctrl>+<right Mouse
button>.

7.3.4 Frequency Sweeping in 3D

Even though we are focusing here on 2-dimensional systems, let us have a brief look
at a 3-dimensional system, using the SHORT CIRCUIT setting again (A = I). This
means m = n = 3, such that x,y,h ∈ R3 and C,A ∈ R3×R3 and the state-parameter
dynamics is realized as a 15 dimensional deterministic dynamical system (we are
still working with the average gradient and infinitesimal noise). In Fig. 7.14 the
results of a computer simulation are shown where we discover that the frequency
sweeping effect also occurs in three dimensions. There are always two channels
(dimensions) of the state performing a frequency sweeping behavior analog to the
two-dimensional case, the remaining channel being more or less decoupled for that
period of time. Interestingly, after such a sweeping mode the pairing changes and
an oscillation in a different 2-d subspace occurs. The controller matrix goes through
a subclass of SO(3) structures, namely those with an SO(2) form in one of the 2-d
subspaces. This corresponds to the rotation around each of the coordinate axes, such
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Fig. 7.13: Frequency sweeping of the BARREL. The robot periodically accelerates, then
slows down, inverts its velocity and rolls with increasing speed. (a) Rotation angle φR of
R and true rotation angle φx obtained from the sensor values for the entire experiment.
(b), (c) Parameter evolution: the elements of the controller matrix C and model matrix
A, respectively, using a smaller time interval. (b) Elements of matrix R =CA. (e) Sensor
value x1(t) and bias term h1(t), for clarity shown in an even smaller time interval. Setting:
εc = εA = 0.05, update rate 25 Hz.

that we have 6 different oscillatory modes, one for each axis running clockwise and
counter clockwise. Again we find the regimes with in-phase and anti-phase relation
such that the oscillation frequency suddenly rises and then falls slowly.

7.4 Resonances — A Case for Embodiment

Except for the BARREL experiment, we have been working with an extremely sim-
plified world consisting of A = I meaning that the system’s response is a direct copy
of the motor signals plus some isotropic noise of infinitesimal strength. Let us now



P
e
rs

o
n
a
l 
C
o
p
y7.4 Resonances — A Case for Embodiment 147

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8(a)

(b)

0
0.02
0.04
0.06
0.08
0.1

0 10 20 30 40 50 60 70
time [102 steps]

C12

C13

C21

C23

C31

C32

ωx1
ωx2
ωx3

Fig. 7.14: Frequency sweeping effect in 3 dimensions. Same as in Fig. 7.11, but with 3-
dimensional state space. (a) Off-diagonals of controller parameter matrix C; (b) Rotation
frequencies ωxi calculated from the state x (no phase relation extracted here). The diagonal
elements of C (not shown) behave analog to the 2-dimensional case. The controller matrix
goes through a subclass of SO(3) structures, namely those with an SO(2) form in one
of the 2-d subspaces. This corresponds to the rotation around each one of the coordinate
axes. The rotation angle is seen to run through a wide range of angles in a periodic manner.
Settings: Average gradient, deterministic dynamics, ε = 0.005.

consider homeokinetic control in a world having a dynamics of its own. We consider
a system given by

xt+1 = yt +Sxt + ςt (7.17)

where S represents the action independent dynamics of the world. Assume the world
is known to the controller and the forward model is thus making a prediction of the
next sensor state as

xt+1 = Ayt +Sxt +ξt+1

with A = I. We will study the influence of the world in two different scenarios,
starting with the case that the bias h= 0 and including the bias dynamics afterwards.

In the following S is manually changed during the experiment. We start with the
case that the autonomous (y = 0) dynamics of the world6 (given by S) is a strongly
damped harmonic oscillator, i. e. S = 1

2 O(φ). Later on we use a magic circle oscil-
lator [58, 70] described by the following matrix

S = uOMC(r) = u
(

1 r
−r 1− r2

)
with 0 < r < 2 realizing an oscillator that is structurally different from the harmonic
SO(2) oscillator.

In the h = 0 case, the reaction of homeokinetic learning to this new situation and
the emerging behavior can be read off from Fig. 7.15. As hoped for, C develops into

6 The autonomous dynamics of the world is given without actions (y = 0): xt+1 = Sxt + ςt .
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Fig. 7.15: The resonance effect. (a) Dynamics of controller matrix C (upper panel)
and rotation angle φ of world (S) and the actual rotation angle θ (of R = AC+S) (lower
panel); Every 10 k steps the world was changed. Up to step 70 k S = 1

2 O(φ), after that
S = 1

2 OMC(r) with r = 0.5,1, and 0 was used. (b) Visualization of the dynamics of R =
AC+ S in Det−Tr plane (see Fig. 7.5). The transitions drawn in dotted gray are caused
by the change of S. The color code corresponds to the colored bars in (a). Parameters:
εc = 0.001, ς = 0 (average gradient).

a scaled rotation matrix with angle θ that matches the rotation angle of S in the case
of the harmonic oscillators and is close to the angle for the magic circle oscillators.
In the case that u = 1/2 and r = 1, C develops into mixture of the magic circle
matrix and an SO(2) matrix. Fig. 7.15 demonstrates very clearly that the resonance
between internal and external world is established in all cases at a very short time
scale despite the fact that the intrinsic oscillations are strongly damped.

When including the bias dynamics, the question is whether the sweeping effect
will either overrun or take account of the intrinsic dynamics of the world. In the
experiments, we initially set S to zero again so that we observe the sweeping effect
as above if we use appropriate initial conditions. Eventually we set S to a strongly
damped 20◦ degree rotation matrix as

S = 0.2O(π/9) .

Interestingly, the frequency sweeping continues until the frequency and phase re-
lation matches that of the external world. Then, the parameter dynamics becomes
stationary, see Fig. 7.16, the controller being locked onto the resonance frequency
of the system under control. Interestingly, in comparison to the case without bias
dynamics, the intrinsic dynamics of the world was much weaker here (factor 0.2 in-
stead of 0.5). Such a strongly damped dynamics does not lead to a locking without
the entanglement with the bias dynamics. The second important novelty here is that
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Fig. 7.16: Frequency sweeping detects and locks latent modes. The same experiment
as in Fig. 7.11, but with an oscillatory world. (a) Controller parameters C and h; (b)
Rotation angles φC,φS of controller matrix C and world matrix S, and angle φx calculated
from the state x; (c) State x. Up to time 27 the world matrix S is zero, and after that
S = 0.2O(π/9). This corresponds to a strongly damped oscillations matrix. The frequency
sweeping stops close to the external frequency and locks to it, as seen in (b). Settings:
Average gradient, deterministic dynamics, ε = 0.005.

a wide range of frequencies are searched actively by the sweeping effect, so that a
broad spectrum of potential resonances can be detected and amplified.

These findings show that homeokinetic learning is able to detect and amplify
latent oscillatory modes of the outside physical world. We will encounter in many
cases this phenomenon also in the experiments with much more complicated robots
both in physical reality and in physically realistic simulations.

Appendix 7.A Properties of Oscillatory Modes

In the following derivations we use A = I so that the feedback strength R = C for
the sake of notational simplicity.
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7.A.1 Derivation of Eq. (7.16).

In order to derive Eq. 7.16 (p. 139), we have to understand the role of the term xy>

in Eq. (7.15), which is oscillating since the state vector is rotated in each time step
by the angle φ . Let us assume that we are sufficiently far from the saturation region
of the neurons so that with g(z) = tanh(z) we obtain approximately

ytx>t = g(Cxt)x>t ≈ γCg(xt)x>t (7.18)

where γ > 0 is a scaling factor taking account of the shrinking effect due to the
squashing. Assuming ε is very small, the time dependent quantities in the learning
rule can be replaced by their time averages (in an appropriate time window). In
order to get the average of yx> we neglect possible correlations with the matrix
elements of G′ and use that with xt ∝ (cosφ t,sinφ t)>

lim
θ→∞

1
θ

∫ θ

0
g(xt)x>t dt = β I

since the cross channel terms average out 7. In particular, the factor β > 0 is equal
to ‖xt‖2 /2 if g(x) may be replaced with x (far from saturation). Using this average,
we find that the time average of yx> is given by

lim
θ→∞

1
θ

∫ θ

0
ytx>t dt ≈ aC

with an empirical constant a > 0 of order 1. Using moreover
(
C>
)−1

= u−2C, we
obtain Eq. (7.16).

7.A.2 The Period-4 Cycle

The transition from Eq. (7.15) to Eq. 7.16 (p. 139) is based on the stability prop-
erties of the period-4 cycle in the combined state-parameter dynamics In computer
simulations the period-4 cycle has been observed to be an attractor with a large basin
of attraction, see Fig. 7.5. We can easily understand the stationarity of the period-4
cycle and its local stability in state space. In order to work this out we introduce a
vector s = (1,1)> and note that the rotation matrix O(π/2) acts as

Os =
(
−1
1

)
, O2s =

(
−1
−1

)
, O3s =

(
1
−1

)
, O4s = s . (7.19)

7 We could also average over one period, i. e. use 1
2π/φ

∫ 2π/φ
0 g(xt)x>t dt = β I, but the self-aver-

aging realized by on-line learning with small learning rate corresponds more to an extended time
horizon.
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So, in the linear system, once the state has reached one of these vectors, its further
fate is given by just changing signs of its components. Now, assuming with the
scaling factor ρ that xt = ρs at any time t the nonlinear dynamics with C = uO
obeys

xt+1 = g(uOxt) = Og(uxt) = Og(uρs) = Og(uρ)s

due to the antisymmetry of g(·), the tanh function, and the sign changing property
of O, see Eq. (7.19). The same is true with taking any of the vectors in Eq. (7.19) as
a starting state. The dynamics is stationary if xt+1 = ρOs meaning

g(uρ) = ρ .

Let us consider this for u close to one, so that u = 1+δ with 0 < δ � 1 so that the
amplitude of the oscillations is kept low (far from saturation). We find the approxi-
mate solution by using the third order approximation for the tanh function obtaining

ρ =± 1
u2

√
3u(u−1)

disclosing an oscillation with finite amplitude ρ for u > 1.
The stability of the state dynamics is proven by linearization, putting

xt = x0
t +δxt

with x0
t being the state vector of the stationary oscillation obeying x0

t+1 = g
(
Cx0

t
)
=

Ox0
t for any t. Using Taylor expansion we get

xt+1 = g(uOxt)≈ Ox0
t +L

(
x0

t
)

δxt

with C = uO, L(x) = ∂g(Cx)
∂x = G′C, and G′ = diag[g′1,g

′
2]. Using that g′1 = g′2 =: g′

we obtain
δxt+1 ≈ g′uOδxt

with g′u > 0. Using g′ = 1−g2 and Eq. (7.A.2) we find in the stationary state

g′u =
(
1−ρ2)u = u− 3

u2 (u−1) = 1−2δ +O
(
δ 2) .

Convergence is achieved if g′u < 1, which is obviously true in the low amplitude
case considered here. This proves the stability of the state dynamics in the period-
4 cycle. The result does not prove the observed attraction of the C matrix towards
the period-4 structure by the learning dynamics. However, it proves the conver-
gence towards the equality of the g′i factors that was essential for the transition from
Eq. (7.15) to Eq. (7.16) where the frequency drift vanishes. So, the result at least
helps in better understanding the attractive behavior of the combined dynamics in
state-parameter space.
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Low Dimensional Robotic Systems

Abstract: In this chapter we will demonstrate the performance of the homeokinetic control
system when applied to physical robots. We will recognize many of the effects observed in
idealized world conditions, shown in the previous chapters, but most dominantly witness
new features originating from the interaction of the learning dynamics with the respective
embodiment. Among them are non-trivial sensorimotor coordination, excitation of reso-
nance modes, the adaptation to different environments – all emerging from the unspecific
homeokinetic learning rules. The entanglement effect is seen to make emerging motion pat-
terns transient so that the behavioral options are explored and a playful behavior is observed.
In order to keep things simple enough for analysis we consider here only low-dimensional
systems and leave the high-dimensional ones for Chap. 10.

In order not to loose contact to reality this chapter presents some applications of
the homeokinetic controller to real and simulated robots. We will restrict ourselves
to robots that are driven by two or three motors in order to be able to study various
effects in detail.

The common feature of all robots is their compliant nature. As a consequence the
state of the robot is not only determined by its actions, but it depends to a large extent
on the current situation and the physical interaction of the body in itself and with the
environment. New effects are observed that did not occur under the idealized world
conditions treated in Chaps. 6 and 7, the most ubiquitous being the establishment of
nontrivial sensorimotor coordinations and the astonishing variety of behaviors that
emerge from the same principle in robots with different embodiment.

Before starting with the different robots and the experiments let us take a look at
the common course of actions we take. We use in all experiments the same one-layer
controller using the explicit learning rules given by Eqs. (5.22, 5.23). Specific is
only the number n of sensors and m of neurons (given by the number of motors) and
the choice of certain algorithmic options that are introduced and explained in more
detail in Chap. 15. Except stated otherwise, the forward model is initialized as a unit
matrix and the controller as a scaled unit matrix1, such that the sensorimotor loop
(in the robot’s internal representation) is subcritical. In this configuration the robot

1 Depending on the setting the sensors may outnumber the motors, so that C and A are rectangular.
We initialize the diagonal elements with a constant and the rest with zero.
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will typically not move and only small actions will occur, caused by the noise in the
sensor readings. In this regime neither controller nor forward model will have gained
any specific information about the particular robot so that we start with a totally
unbiased situation, any further developments being caused alone by the interplay
between the physical state and the parameter dynamics. More information about
how to initialize and customize the homeokinetic “brain” can be found in Sect. 15.2.

Now we are ready to start! Let us enter the world of playful machines.

8.1 SEMNI

The first robot we want to present here is SEMNI, see Fig. 8.1 and [72], a machine
designed and built at the HU Berlin by Manfred Hild and his team. Comparable
to the BARREL we have considered earlier the robot also shows strong embodiment
effects, given in particular that its sensor readings are related to its physical situation
only in a very intricate way, see below for details.

Before we start let us tell a short story on how we came to control this robot.
We had a phone call with Manfred about a different matter, when he was eventually
saying: “Guys, I have here a robot that you will like!.” After looking at the picture
there were no questions asked and we took the train for one day to Berlin—very cu-
rious about what would happen. First we had to solve the usual technical problems.
Thanks to the good organization and the great help of the team in Berlin we man-
aged that until lunch time. The robot was connected with a cable to our laptop and
the sensor and motor values were passed back and forth. Then something amazing
happened—the robot is getting into motion and already during the first half hour we
have seen so many nice but unexpected motion patterns excited by the controller –
we could not quite believe it ourselves. The remaining afternoon we experimented
with different settings, part of it is presented here.

The main points we want to show with the following experiments are the inte-
gration of different sensors into the sensorimotor loop and how the controller picks
up resonance modes.

8.1.1 Construction

The robot consists of two parallel frames with an oval shape. Between them a two
segmented leg, is mounted with two servo motors see Fig. 8.1. The leg can be moved
to either side of the robot and changes such the center of gravity but also the support
surface. If moved in the center then it can be completely subsumed into the frame
boundary. Above the leg, there is circular “head” in which the controller board is
mounted.

The motors are Dynamixel RX-28 [146] servo motors which are, however, con-
trolled by the hardware with the voltage directly, so in fact no servo functionality is
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Fig. 8.1: The robot SEMNI by
M. Hild. It has strong embodi-
ment effects, is very light and ro-
bust, and has an external power
supply. See [72] and Fig. 8.2
for more details. c© Manfred
Hild [71].

used. In this way the velocity of the motor without any load is controlled, however,
the true velocity depends of course on the external forces, the battery voltage and so
on. On top of the voltage control we implemented a second control mode setting the
target joint angles which are then achieved with a PID controller. So we have two
control modes: voltage control and position control. The robot has different sensors
as explained in the following.

Joint angle sensors are integrated in the servo motors and measure the actual
angle of the joints.

Motor current sensors measure the electric current consumed by each motor
individually and are thus a direct measure of their physical performance—the mea-
sured current is proportional to the motor torques. The measurement is performed on
the embedded board with high precision. In particular, the torques increase abruptly
if there is some mechanical resistance against the motion of the leg driven by the
motors. When using the current sensors with the homeokinetic controller, one needs
a small preprocessing because the current signal is positive2 independently of the
direction of rotation. We therefore multiply the sensor value by the sign of the volt-
age applied to the motor. The resulting signal has a sign now but we observe a jump
when crossing the zero line because the current is never zero due to friction and
other mechanical loads.

Acceleration sensors measure the acceleration along the three axes of the robot.
In the normal operation (robot not fallen over) the lateral acceleration is always zero
so that we only use the two relevant directions a1,a2, see Fig. 8.2. The accelera-
tions are caused by the changes of the body position and/or orientation with varying
velocity, for instance if the controller drives some periodic motion. Note that the
gravitation vector shows up in the sensor values such that the accelerations caused

2 In fact the measured current can be negative if the leg is moved externally against the torque of
the motor.
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Fig. 8.2: Schematic diagram of the robot SEMNI with controller neurons. The mov-
able leg is highlighted. The green part is mounted to the frame and the red part is con-
nected to the green part both with servo motors. The currents are actually measured by
the embedded controller board and not by the servos themselves.

by the movement are overlaid with the static information of the orientation of the
body in space.

The sensor values are scaled with a constant factor such that their range is roughly
between minus and plus one. Actually this is not necessary in the algorithm since
the learning dynamics drives the parameters until the feed back strength in the loop
achieves the slightly overcritical value. However, when using the bare sensor values
the Ci j values increased like Cii ≈ 20, which means that the size of the gradient
decreased by a factor of 400 (due to the

(
CC>

)−1 term). This can be compensated
by changing εc appropriately. In practice, however, it is more convenient to work
with some standard learning rates. Moreover, if the sensors have a great variety
their relative influence is biased.

8.1.2 Experiments

We have done a number of experiments with the robot with different sensor-
motor combinations. The controller network has only two neurons, see Fig. 8.2.
The forward model network has the same number of neurons as there are sensors
(not shown). We use here the full model (M(x,y) = Ay+ Sx+ b) as introduced in
Sect. 9.2.

When connecting the robot to the controller one has to decide which sensor val-
ues to use and how to control the motors. The most direct combination is to use the
joint angle sensors and send joint angles as target values to the motors. This is best
realized by a classical servo motors. In this setting, we observed after a short time
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the emergence of an SO(2) structure for the controller matrix with ensuing oscilla-
tory behaviors of the leg much in the way of the self-regulation towards the effective
bifurcation point of a Neimark-Sacker bifurcation as investigated in Sect. 7.2. In this
regime, the robot is typically lying on either of the curved sides so that the move-
ments of the leg excite a rocking behavior. When performed at the natural frequency
of the robot the rocking could become stronger. However, this does not happen in
this control mode. Thinking about the available information to the controller, we re-
alize that the joint angles in the leg give nearly no feedback from the body about its
current pose. Any indirect influences are compensated by the position control of the
PID controller so that only little “feeling” for the body can be developed3. Moreover,
the entanglement with the bias dynamics leads to behavioral changes so that a very
dynamic rolling of the robot is observed that is realized by consecutive flips, see
Video 8.1.

A more suitable configuration to bring the embodiment into play is to use a volt-
age control. The voltage applied to the motors is directly given by the scaled motor
values (y1,2). Let us first see which variety of behavior emerges when all available
sensors are used, namely the preprocessed current sensors, the joint angle sensors,
and the acceleration sensors. Now we observe the balancing of the robot on the
lower limp, with the body being horizontal but lifted. The support surface is only
given by the lower part of the leg. Oscillatory movements are adapted to the current
situation such that the robot’s behavior looks like a picking bird, or it slides or steps
along the ground. Importantly the robot reacts sensitively to external influences and
adapts to new situation very quickly. More details can be found in Video 8.1. Let us
look at some effects more closely.

Video 8.1: The SEMNI robot with homeokinetic controller. Until the first cut in the
video only joint angle sensors and position control were used. At the beginning a fre-
quency wandering is observed (see Sect. 7.3.2). Eventually the legs hits the ground and
the movement is hindered. The system enters a bias dominated dynamics where a slow
oscillation occurs. Both joints get synchronized through the mechanical limits and the
robot performs a series of flips (as depicted in the screenshots). After the first cut all sen-
sors and the voltage control were used. Note the change in the behavior, which becomes
more compliant with the movement of the robot. Different frequencies of oscillations are
developing, depending on the current mode of behavior and the pose of the robot. Later
in the clip the sensitivity of the controller can be seen. The robot is touched very gently
and the behavior changes rather strongly. Also note the reaction when the robot is turned
over. Importantly the controller adapts very quickly and engages the body into a different
oscillatory mode. The video can be watched at http://playfulmachines.com.

3 The internal error of the PID controller would give some more information on the situation, but
they are not accessible to the controller.

http://playfulmachines.com/videos.html#vid:ExpLowDim:Semni:compilation
http://playfulmachines.com/videos.html#vid:ExpLowDim:Semni:compilation
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8.1.2.1 Sensor Integration

Let us consider the setup with voltage control and all sensors: current sensors
(x1,x2), acceleration sensors (x3 = a1,x4 = a2), and joint angle sensors (x5,x6). In
the initial condition the controller matrix C is such that the motor current sensors
are mapped to the motor outputs and the other sensors are ignored. However, after a
short time the other sensors start to become integrated as depicted in Fig. 8.3. Thus
the robot becomes sensitive to e. g. the accelerations and can quickly pick up arising
oscillations or react on external perturbations, see Video 8.1.

-2
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0.5

1
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time [min]
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Fig. 8.3: Evolution of the sensor integration by homeokinetic control. Depicted are
the coupling strengths to the first motor neuron from: the current sensor of the first motor
(C11), the acceleration sensors (C13,C14), and the joint angle sensor of the first joint (C15).
Initially only the current sensor is integrated. Later the controller becomes sensitive to all
sensors and the integration changes qualitatively with time.

This is a nice effect that helps also in more complex systems to get the robot in
dynamical contact with its environment. Some theoretical considerations about the
integration of sensors in the loop can be found in Chap. 15, Sect. 15.4.1 (p. 279).
It should be noted that we used the so called motor-space realization, introduced in
Sect. 15.6 (p. 282), of the homeokinetic learning rule obtained by using the gen-
eralized pseudoinverse of Eq. 15.53 (p. 278). This variant of the general algorithm
seems most appropriate if the sensors outnumber the motors.

8.1.2.2 Mechanical Limits and Offset Compensation

As seen in Video 8.1 the motors are sometimes driven to the mechanical limits of
the joints. This is no surprise given the fact that the controller has no information
about the limitations of the control regime. Fortunately, in the case of position con-
trol the limits directly correspond to the saturation regions of the neurons. This helps
keeping the motors away from the limits since the parameter dynamics is trying to
stay away from the saturation regime. In the case of voltage control the situation is
different. Especially when the current sensors are used one could expect the motors
to drive strongly against the limits, since the current sensor value keeps increasing
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Fig. 8.4: Offset compensation and reversal at mechanical limits with SEMNI. Setting:
voltage control and with all sensors. (a) Bias dynamics; (b) Bias dynamics and error E
zoomed in; (c) Joint angles; (d) Current sensor zoomed in. The plot shows how the bias
dynamics (a) compensates the slowly varying mean of the angle sensors (c). At time 277
a mechanical limit was hit at joint 2 (a). The current x2 rises sharply (d) and thus the error
rises as well (b). Consequently the bias h2 is decreased and the joint moves in the opposite
direction (x2 changes sign).

once the boundary is hit. However, as a rule there is no collision with the boundary
observed in the experiments. The point is that the current rises disproportional close
to the boundary producing a high modeling error which in turn leads to a fast bias
dynamics producing a jump to the other fixed point of the respective control neuron.
Also, if the amplitude of the oscillations does not reach both limits equally the mean
of the motor value oscillation is automatically shifted away from the physical lim-
its because of the asymmetry in the dynamics. The effect is illustrated in Fig. 8.4.
This scenario that also holds for many other sensor qualities can be considered as a
specific example of the temperature effect discussed in Sect. 5.3.4 (p. 95).

In the experiments we also encounter sensor values that do not follow the mo-
tor signals in a proportional way. Additionally the sensors do not have a zero mean
within a certain time window. The bias dynamics compensates the offsets as shown
in Fig. 8.4. For example the angle sensors change rather slowly, such that the bias
cancels the current offset and enables the system thus to amplify small fluctuations.
In this way oscillatory modes can emerge. The same holds for the acceleration sen-
sors as we will see in the next section.

8.1.2.3 Picking up Resonance Frequencies

In the experiments we observe that the robot is often engaged into swinging be-
havior at the resonance frequency of the body. At this frequency the body would
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swing by itself if deflected. If now the control manages to stimulate at this frequency
the system will come into resonance and the oscillations get a high amplitude. We
will now restrict ourselves to the case where only acceleration sensors are used
to analyze what happens. Additionally the robot’s head was loaded with a weight,
which increases the inertia effects lowering the resonance frequency. We will dis-
cuss two short sequences where the robot was actively picking up the particular
resonance frequency of the body. The data is plotted in Fig. 8.5 and the behavior
can be seen in Videos 8.2 and 8.3. In the first sequence the robot was lying on its
right (w. r. t. Fig. 8.1) with the leg touching the ground. It first oscillates at a high
frequency that fits to the current situation such that the robot is sliding slowly to the
left. After manually turning the robot over the head to its left the body starts to swing
more slowly. The controller appears to pick up the new frequency immediately and
amplifies the rocking behavior by the leg movements.

Video 8.2: SEMNI getting excited at its resonance frequency. Setting: Robot with
loaded head, acceleration sensors, and voltage control. The corresponding data is plotted
in Fig. 8.5(a-c). At the beginning the leg moves in synchrony with the body at a rather high
frequency. The robot slowly slides into one direction. Then the robot is manually turned
over and starts to swing at a much lower frequency. The robot’s resonance frequency is
exited and the amplitude rises such the robot falls over to the previous position. The video
can be watched at http://playfulmachines.com.

To understand this, let us consider for a moment a person on a swing. In order to
keep the swing going (counteract the damping forces) the legs (or the entire body)
need to be moved in the right phase relation to the movement of the swing. This
is very similar to what happens with the robot. The sensor values correspond to
the position of the robot in some way. In order to produce motor commands in
the correct phase relation, the C matrix must adapt appropriately. This is obviously
what happens in the experiments. As seen in Fig. 8.5, C acquires an SO(2) structure
with a rotation angle corresponding to a frequency much higher than the observed
physical frequency. Nevertheless, the C matrix produces a suitable phase relation
to accelerate the robot so that the controller is exciting the body at its resonance
frequency.

Why is the phase relation (the angle of the SO(2) matrix) correct? Despite its
SO(2) structure the controller could also be counterproductive (anti-phase) and stop
the oscillations! We do not have a good theory about it yet. Nevertheless, we have
some hypotheses: first, the system prefers to have an SO(2) structure, as discussed in
Sect. 5.3.5, which is a necessary condition to get this behavior. Second, the learning
rule optimizes for predictability and sensitivity. If the C matrix damps the oscilla-
tions then the effective sensitivity is low. In the other case, when the oscillations are

http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1a
http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1a


P
e
rs

o
n
a
l 
C
o
p
y8.1 SEMNI 161

-2

-1

0

1

2

3(a)

(b)

(c)

-2

0

2

4

6

-4
-3
-2
-1
0
1
2
3

218 220 222 224 226 228 230
time [sec]

-2

-1

0

1

2

3(d)

(e)

(f) -2
-1
0
1
2
3
4
5
6
7

-3
-2
-1
0
1
2
3
4

265 270 275 280
time [sec]

C11

C12

C21

C22

h1

h2

x1

x2

Fig. 8.5: Getting into resonance with the body. The SEMNI robot with loaded head,
acceleration sensors, and voltage control. (a,d) Controller matrix C; (b,e) bias h; (c,f) ac-
celeration sensors values (x1 = a1,x2 = a2). Plotted are two time intervals where the robot
was manually moved (marked with a vertical line) into a new situation in which the body
can strongly swing. Both times the natural frequencies of the robot are taken up and am-
plified such that a heavy rocking occurs. The corresponding behaviors can be seen in the
Video 8.2 (a-c) and Video 8.3 (e-f). In both cases the bias h quickly adapts to the new sit-
uation and allows the system to enter an oscillation. In the first interval the robot swings
back to the original pose and also the parameters are seen to return. In the second interval
the oscillations are interrupted by hand and the robot remains on the other side.

Video 8.3: Oscillatory behavior of SEMNI. Two videos of the SEMNI robot in the same
setting as in Video 8.2. Top: Here the oscillations are interrupted by hand and the robot
remains on the other side. The corresponding data is plotted in Fig. 8.5(e-f). Bottom:
A longer clip showing the rocking behavior. The videos can be watched at http://
playfulmachines.com.

http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1b:a
http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1b:b
http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1b
http://playfulmachines.com/videos.html#vid:ExpLowDim:semni:weight1b
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amplified, the sensitivity is high and the system is also well predictable because the
state vector obeys a strict rotational law. By this argument, the observed resonance
phenomenon seems to be in good agreement with the homeokinetic principle—be
sensitive but predictable.

8.2 SPHERICAL

Let us now consider a simulated robot with three motors—the SPHERICAL, which
is a 3D version of the BARREL (Sect. 3.2). The design is inspired by the artist
Julius Popp [141]. We conducted various experiments with the robot in different
environments ranging from a free plane to a corridor and complex landscapes with
many robots in them. The results are published in [43, 44].

The main points we want to illustrate with this robot are the switching between
metastable modes and the role of situatedness.

8.2.1 Construction

The SPHERICAL has a ball shaped body and is equipped with three internal masses
whose positions are controlled by motors (m = 3), see Fig. 8.6(a). If not stated
otherwise each mass has the same weight as the hull alone.

(a) (b)

x2

x1

x3

Fig. 8.6: SPHERICAL with axis-orientation sensors. (a) Screenshot from a simulation.
The red, green, and blue masses are moved by actuators (linear motors) along the axes;
(b) Schematic view of the robot with axis-orientation sensors (xi). Note that x1 < 0 here.
See also Fig. 3.4.

The position control of the movable masses is done by servo motors. The motor
values define the target positions of the masses along the axes. A value of zero stands
for a centered position and −1 and 1 correspond to the outer positions. Collisions
of these masses especially at the intersection point are ignored in the simulations.
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We use this robot in two different sensor configurations. The first one uses axis-
orientation sensors (n= 3), see Fig. 8.6(b). These are the same sensors used with the
BARREL. For each axis the projection of its direction onto the z-component of the
world-coordinate system is measured. The second setup uses infrared (IR) sensors
and will be explained further below.

In either case, both sensor and motor values are related to the motions of the
sphere in a complicated manner. The challenge for homeokinetic control is to de-
velop sensorimotor patterns that are related to the natural motion patterns of the
physical system. As we will see, this happens indeed under widely different physi-
cal conditions, sensor settings, and initializations.

8.2.2 Self-Exploration of Rolling Modes

In the first experiment we look at the behavior of the SPHERICAL with axis sensors
on level ground, see also [44]. The homeokinetic controller has here three motor
neurons and receives three sensor inputs. Initially only small fluctuations due to the
sensor noise occur. The learning dynamics increases the feedback strength steadily
so that the controller is getting more and more sensitive to the sensor values. Once
the critical level is exceeded fluctuations get amplified so that the symmetry of the
system is spontaneously broken and the body starts to roll into a decided direction.
This is the first moment when the sensor values show a defined response to the ac-
tions the response depending, however, on the specific embodiment and the physical
situation in an intricate way. Nevertheless it is only now that homeokinetic learning
can make contact with the nature of the physical system—rolling in particular as the
most natural motion pattern of the SPHERICAL.

The most simple of the natural modes is realized by rotating around one of the
internal axes with the mass on that axis being used for steering and the other ones for
shifting the center of gravity as in the BARREL case. The experiments demonstrate
that the controller picks up such a rolling mode and amplifies it very quickly. Due to
gyro forces these behaviors are physically stabilized. Nevertheless due to the desta-
bilizing and explorative character of homeokinetic control the steering mass keeps
also shifting periodically so that a slightly curvy trajectory is created. Eventually
the steering mass starts to oscillate with increasing amplitude such that the current
mode is actively destabilized and either a rolling mode around a different axis is
found or an alternative rolling mode is realized, controlled by all three masses shift-
ing with equal amplitude. The different modes are waxing and waning as shown in
Fig. 8.7 and Video 8.4. Typical trajectories are displayed in Fig. 8.8.

Occasionally we also observe a jumping behavior obtained by a sudden syn-
chronous motion of the masses in the vertical direction, comparable to the “lollop-
ing” mode observed with the BARREL. In addition to the earlier observed sweeping
behaviors, which occur here partly while in one of the rolling modes, we find here a
rather abrupt switching between different modes. We interpret these findings as an
indication that the robot actively explores its behavioral capabilities.
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Fig. 8.7: SPHERICAL exploring its behavioral capabilities. (a) Sketch of four typi-
cal behaviors (A-D), namely the rolling mode around the three internal axis (A-C) and
around another axis (D). (b) Amplitudes of the motor value oscillations (y1...3) and the
time-loop error E (scaled for visibility) averaged over 10 and 30 sec, respectively. Corre-
sponding behaviors are indicated with letters A-D. The extended forward model was used,
see Sect. 9.2.
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Fig. 8.8: SPHERICAL exploring the space with axis orientation sensors. Two indepen-
dent trajectories each of a 200 minute run of the SPHERICAL in free space observed from
above. Note that the robot has a diameter of 1. There are passages of straight rolling as
well as curvy behavior.
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Video 8.4: Different rolling modes of the SPHERICAL. The video can be watched at
http://playfulmachines.com.

8.2.3 Situatedness — How the Environment Shapes the Behavior

The emergent behaviors are not only dependent on the particular body, but also on
the environment. The effect of the environment is well seen in the following two
experiments. In the first one the SPHERICAL is put into a basin with a rotational
symmetry, see Video 8.5 and [43]. The robot is placed at the bottom of the basin and
initialized as usual. The starting phase is the same as on level ground, the robot starts
to roll in a random direction, but now the trajectory is influenced by the geometry of
the basin. First the robot rolls back and forth and the trajectory crosses the bottom
of the basin. However, after some time a circular trajectory is realized, see Fig. 8.9.
In this case the robot essentially keeps a constant height.

Video 8.5: SPHERICAL in a cir-
cular basin. The robot starts to
roll around randomly. Then it en-
ters a circular trajectory as sug-
gested by the environment. The
video can be watched at http:
//playfulmachines.com.

Taking a closer look we find that all three weights are used to control the behav-
ior, see Fig. 8.10. This contrasts the observations on level ground where this mode
occurs only rarely, the robot keeping instead one of the weights in the center most of
the time. These simple rolling modes are stable on a flat surface, but in the basin the
environment disturbs this behavior and thus the robot develops a different rolling
mode. You can perform the simulations yourself by doing Experiment 8.1.

At this point one may ask how the controller is able to learn this behavior al-
though it does not have any sensors for directly getting information on the geometry
of its environment. We speculate this to be a consequence of the symmetry breaking
mechanisms underlying the emergence of the large-scale motions. The point is that
the parameter dynamics is generated by gradient descending the time-loop error E,
which is defined entirely by the dynamics of the sensorimotor loop. Hence the sym-
metries present in the sensorimotor dynamics and the environment are conserved

http://playfulmachines.com/videos.html#vid:spherical:flat
http://playfulmachines.com/videos.html#vid:spherical:flat
http://playfulmachines.com/videos.html#vid:spherical:basin
http://playfulmachines.com/videos.html#vid:spherical:basin
http://playfulmachines.com/videos.html#vid:spherical:basin
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Fig. 8.9: SPHERICAL in a basin. Trajectory viewed from above (x− y coordinates of
the position). (a) First 120 sec; (b) From sec 420–560. The diameter of the robot is 1. The
dotted circles are the level curves for height 0.5 and 1 of the basin. Later the robot circles
at about a constant height along the basin.

also in the full system comprising the parameter dynamics. The sensitization effect,
see Sect. 5.3.2, destabilizes the sensorimotor dynamics so that every large scale
motion is a result of a spontaneous symmetry breaking. These symmetry breaking
effects tends to be economical, i. e. symmetries are broken in the least possible way,
see also Sect. 5.3.6 (p. 99). A circular trajectory in a rotational symmetric basin
seems to be a convenient realization of this paradigm since we have a large-scale
motion while keeping as much of the full symmetry of the system as possible.
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0.6
0.7
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|y1| |y2| |y3|

Fig. 8.10: Particular rotation mode when rolling in a basin. The plot shows the am-
plitudes of the motor value oscillations (y1...3) averaged over 5 sec sliding windows. The
robot mostly rolls around an inclined axis (not around one of the internal axes), see be-
havior D in Fig. 8.7. The sensor values and the rotational velocities around the internal
axes confirm the finding (not shown).
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Experiment 8.1: Self-exploration and situatedness with SPHERICAL.
For this experiment you have two choices: (a) SPHERICAL on flat ground, or (b) SPHERICAL in a basin. In (a) observe
how the controller explores the different rolling modes. The learning rate is set very high (εc = 1), such that the modes
are quickly changed. You may start GUILOGGER or MATRIXVIZ and select C, A and y. Decrease the learning rate
to 0.3 or below and see how the modes get more stable. Eventually the robot might have left the virtual world and
the colored ground ends. Use <Ctrl>+H to get it back to the initial position. In (b) you can reproduce the results of
the robot in the circular basin. You can press * on the Keypad or >realtimefactor=0 on the console to set to
maximum speed. After about 2 hour simulation time (few minutes on your computer) the robot will manage escape
from the basin.

8.2.4 Situatedness — Adapting to the Environment with External
Sensors

In the following experiment we will replace the axis orientation sensors by infrared
sensors as depicted in Fig. 8.11(b). In total six sensors are used that extend the
internal axes towards the outside of the robot (n = 6). Each sensor measures the
distance to the ground or to another objects. The range of the sensors is the 5 fold
of the hull radius. For distances exceeding the range the sensor values are zero and
for close objects they are equal to 1. In between a linear characteristic is used.

(a) (b)

IR sensor ray Floor

Wall

IR sensor ray

Fig. 8.11: SPHERICAL with infrared sensors. (a) Screenshot from a simulation. The IR
sensors are drawn in black if they measure no obstacle and in red if they do. (b) Schematic
view of the robot with the sensor values xi.

The relation between the orientation of the sphere and the sensor values is largely
different from the angular sensor setup. Nevertheless our controller in a short time
learns again to generate nice rolling modes. In free space there is no substantial dif-
ference in the behavior between the two sensor cases, only that the sphere is rolling
more straight ahead in the IR case. However a qualitative difference is observed if
we put the robot into a non-trivial environment. In particular, the robot is placed into
a circular corridor with a diameter of 20 and a width of 2 sphere diameters.

The robot now has to change its strategy if it wants to be active and nevertheless
predictable. In fact, if the robot is rolling straight ahead it will collide with the walls



P
e
rs

o
n
a
l 
C
o
p
y168 8 Low Dimensional Robotic Systems

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200

time [sec]

(a)
px py

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200

(b)
px py

Fig. 8.12: Smooth circulation in the corridor with infrared sensor. Plot of the coor-
dinates of the SPHERICAL in a circular corridor over a total length of 20 min. The robot
was equipped with: (a) infrared sensors, and (b) axis orientation sensors. At the sine-like
shape of the upper plot one can clearly see that after some initial time the robot with
infrared sensors is passing several rounds in a row in a smooth manner. The robot with
z-axis sensor as described above is much less successful.

quite often (the outer wall of the corridor is constructed from 24 straight segments).
The collisions affect the rotation axis substantially. In order to go around the envi-
ronment smoothly the robot needs to steer in a circular manner or find a way to roll
smoothly along the wall.

In Fig. 8.12 two trajectories with both sensor settings, axis orientation and in-
frared sensors, are displayed. The result is distinguishing and shows that the robot
with infrared sensors is performing much better in this environment. By observing
the robot we have encountered a mode where the sphere is rolling sensibly along the
wall realizing a stable rotation around one axis like on level ground, however now
with a definite axis inclination, see Video 8.6 (the corridor is a bit wider to allow
easier video recording). This balancing is much better possible with infrared sensors
than with axis sensors, because the walls can actually be sensed by the former ones.

8.3 SLINGING SNAKE

Here we will consider the SLINGING SNAKE, a simulated robot with two active
and many passive degrees of freedom, in order to show how hidden modes can
be discovered. The robot is underactuated in the sense that its actuators are not
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Video 8.6: SPHERICAL adapts to a circular corridor. Later in the clip the robot re-
peatedly balances along the wall for some time. The video can be watched at http:
//playfulmachines.com.

powerful enough to set the robot (especially the passive parts of the body) in motion
if the physical properties of the body are neglected. Thus a whole-body motion can
only be excited by exploiting the embodiment.

As before we connect our controller to the robot using the explicit learning
rules, see Eqs. (5.22, 5.23), with the add-on for enhancing dynamical harmony, see
Sect. 15.1.1.4. Hence the controller has initially no specific information about the
physics of the body. In order to generate active behavioral modes of the whole body
it has to become sensitive to the sensor values which show the effects of the body
properties if appropriately excited.

In the following section the mechanical configuration of the robot and the setup
of the controller will be described before having a closer look at the experimental
run. The construction of the robot and the simulations were done by Frank Hesse,
see [68, 69] for further details.

8.3.1 Construction

The snake-like artifact, called SLINGING SNAKE, is simulated in our LPZROBOTS
simulator (Chap. 16), like the other virtual robots in this book. The SLINGING
SNAKE consists of 10 spheres, see Fig. 8.13. The head element (red sphere) is con-
nected to a tail of 9 spheres, which are connected to each other by a link (frictionless
ball-and-socket joint) so that each of the spheres can rotate passively like in a string
of beads. The red sphere is the actuated head of the SLINGING SNAKE to which a
force vector

f =
(

fx
fy

)
(8.1)

is applied. The force vector is parallel to the ground (lying in the plane). All other
parts of the body are passive. The spheres have a friction for sliding motion (µ = 0.3)
and optionally there is a small rolling friction. The available forces are not strong
enough to enable the head element to pull the tail. Hence a whole-body motion can
only be generated if certain lateral motions are excited as we will see below.

http://playfulmachines.com/videos.html#vid:spherical:corridor
http://playfulmachines.com/videos.html#vid:spherical:corridor
http://playfulmachines.com/videos.html#vid:spherical:corridor
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The robotic device provides feedback from two exteroceptive sensors measuring
the components of the velocity vector of the head element

v =

(
v x
v y

)
(8.2)

given in global coordinates, see Fig. 8.13(b).

(a) (b)

Fig. 8.13: Mechanical construction of the SLINGING SNAKE. (a) Ball-and-socket joints
between the spheres are drawn. Arrows indicate the possible rotations: in every direction
at the joint and around the axis between joints. (b) Sketch of the SLINGING SNAKE in the
global coordinate system. After execution of a time step in which a force vector f was
applied to the head element the velocity vector v is read back as feedback of the system.
Both quantities are in global coordinates.

8.3.2 Experiments

During the first experiment three robots are placed on a flat ground within a square
arena of a simulated world. After the typical unit-initialization the robots ly on the
floor and barely move since the feedback strength in the sensorimotor loop is sub-
critical. The controller values increase by the learning dynamics and we observe
some movements, which are mostly sideways, since the robots cannot simply move
straight ahead. Eventually the movements of the head become strong enough to
cause the tail to sway and to produce a (delayed) feedback on the head. The con-
troller starts to respond to the swaying of the body and manages to amplify these
slinging movements. Thereby a rolling motion of all, active and passive, elements
of the body is generated, see Video 8.7(a). This motion is characterized by a rota-
tion of all spheres around their axes, where the first half of the spheres rotate in the
opposite direction than the other half, see Fig. 8.14. Hence a collective rotational
mode of behavior of the underactuated robotic device with many degree of freedom
was excited. While the whole snake is rotating around its center, it becomes stiff like
a stick due to centrifugal forces and gyro effects. The frequency of this whole body
rotation is altered with time. Later on we observe collisions of fast and slowly rotat-
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Fig. 8.14: SLINGING SNAKE in the rotational mode. This behavior is characterized by
a rotation of all spheres around their axis (connection between the joints), where the first
half of the spheres rotate in the opposite direction than the other half. Hence the whole
snake rotates around its center and becomes stiff like a stick due to the centrifugal forces.

(a) (b)

Video 8.7: Whole body movement with SLINGING SNAKE. Three SLINGING SNAKEs
are placed in a square arena. (a) Initially they only move little but slowly more and more
strong movements are observed. Nevertheless, due to the underactuated nature, the robot
cannot be pulled straight along the ground. Eventually the learning rate is increased and
the robots start to pick up the swaying movement of their body and enter a fast rotational
mode. (b) The robots are slowed down or accelerated by collisions. The videos can be
watched at http://playfulmachines.com.

ing robots, which cause heavy perturbations. Nevertheless, the controllers quickly
adapt to the new frequency or initiate the spinning again, see Video 8.7(b).

Let us take a more quantitative look at the experiments and the possible pitfalls.
For that we place a single robot on a flat ground without borders or obstacles. Hence
there are no perturbations by the environment. Let us first consider an idealized con-
dition without rolling friction. The robot again enters the spinning mode quickly and
accelerates, see Video 8.8. The controller matrix clearly shows a rotational structure
with increasing rotation angle as displayed in Fig. 8.15. While the rotation frequency
keeps increasing, the whole body rotation frequency is decreasing steadily. Eventu-
ally the controller matrix reaches the period-4 cycle structure (diagonal elements
are zero and off-diagonals are non-zero with opposite sign), which the robot cannot
follow because of the prohibitively high frequency so that the robot stops rotating.
As discussed in Sect. 7.2.1, this high frequency oscillation is an attractor and the pa-
rameter dynamics will not depart from there. We call this situation a high frequency

http://playfulmachines.com/videos.html#vid:ExpLowDim:hurling:start:a
http://playfulmachines.com/videos.html#vid:ExpLowDim:hurling:start:b
http://playfulmachines.com/videos.html#vid:ExpLowDim:hurling:start
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Video 8.8: Sweeping mode of SLINGING SNAKE with high frequency catastrophe.
The initial phase illustrates very nicely how the robot enters the spinning mode. The fre-
quency rises quickly and then is lowered again until the robot comes to a rest. It will not
come out of this situation, see the corresponding data in Fig. 8.15. The video can be
watched at http://playfulmachines.com.

catastrophe. Note the difference to the SEMNI case where the period-4 cycle still
was productive in exciting a rocking mode. Probably, the difference is explained by
the fact that in the SEMNI case all the controller had to do was to find the appropriate
phase relation whereas in the present case the controller has to get into resonance
with the many degrees of freedom in a much more subtle way.

Why is this happening? Once rotating the robot’s motion is only little influenced
by the actions, especially when considering only one time step as the forward model
does. As the experiments show, the model degenerates quickly to a rotation matrix
with high rotation angle with opposite sign as that of the controller matrix. This
is reflecting the fact that the robot can not follow the high frequency oscillations
requested by the controller. This leads to a kind of “misunderstanding” between
model and controller so that, once the robot comes to rest, there is no ‘good’ sensor
data received that would correct the model and thus also the controller.

If we, however, change the conditions and include a small rolling friction the
high frequency catastrophe is avoided. In the experiments, the initial period is tak-
ing a bit longer, but after about 2 min the robot enters as before the oscillatory mode
with a lower maximal frequency. Then we observe a slow fluctuation of the rota-
tion frequency until a stationary value is reached, see Fig. 8.16. We then manually
decelerated the robot until it is at rest. The robot is able to enter again a spinning
behavior very quickly and a similar evolution of the frequency is observed until it
again enters a stationary value.

8.4 ROCKING STAMPER

The second real robot we want to present here is the ROCKING STAMPER. It is yet
another “crazy” robot that can demonstrate interesting properties of homeokinetic
control. It consists of a bowl-like trunk with an actuated inverted pendulum on top.
A somewhat similar robotic construction, called “Stumpy,” was developed at the lab
of Pfeifer, see [76, 77]. They have shown that the robot performs self-stabilization
and displays behavioral diversity while controlled by very simple and fixed control
structures—the exploitation of embodiment.

http://playfulmachines.com/videos.html#vid:ExpLowDim:hurling:sweep:broken
http://playfulmachines.com/videos.html#vid:ExpLowDim:hurling:sweep:broken
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Fig. 8.15: Sweeping mode of SLINGING SNAKE without rolling friction. (a) Controller
matrix C; (b) Model matrix A; (c) Rotation frequency of the robot around the z− axis
(perpendicular to ground plane) ω . The controller takes up the swaying of the body after
about 1 min. The spinning speed rises and lowers again (c) until the robot comes to rest.
The model matrix (b) and the controller matrix (a) develop into a period-4 cycle matrix
at about 2.5 min (and then with even higher frequency). As soon as the robot comes to
rest the parameters diverge since no motion can be initiated. See also the corresponding
Video 8.8. Settings: εc = 0.03, εA = 0.03, µroll = 0.0, γh = 0.1 (Sect. 15.1.1.4).

Similarly, our controller will automatically make use of the particular embodi-
ment from scratch and excites different behavioral modes. Will mainly focus on the
establishment of a sensorimotor coordination in a very inaccurate and non-trivial
setting. Furthermore we will study the effects of changes in the sensor characteris-
tics and even the failure of sensors, see also [41].

8.4.1 Hardware

The ROCKING STAMPER consists of a bowl-like trunk with a pole mounted on it
that is driven by two motors (m = 2) in orthogonal directions, see Fig. 8.17 and
8.18. The robot is equipped with four infrared (IR) sensors (n = 4), two mounted
at the front end of the trunk looking down and slightly sideways and two at the
back, which can be flapped up and down. They measure the distance to the ground
or to the wall. The sensor value changes depending on the pose of the trunk in a
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Fig. 8.16: Behaviors of SLINGING SNAKE with rolling friction. The same as in
Fig. 8.15, but here with rolling friction and a lower learning rate. The controller ma-
trix has also a rotational structure but with a lower maximal rotation angle. The frequency
fluctuates but enters a steady state at about 30 min. At 42 min the robot was decelerated
by hand. After a short resting period the robot enters a spinning mode again. Settings:
εc = 0.02, εA = 0.01, µroll = 0.005, γh = 0.1.

(a) (b)

Fig. 8.17: The ROCKING STAMPER, a pole driven bowl-shaped robot. (a) Close view
from the top; (b) Side view. Here only two sensors are mounted.
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nonlinear fashion. The motor commands dictate the nominal positions of the servo
motors, which determine the angles of the pole relative to the trunk, as illustrated in
Fig. 8.18.

Heavy Mass

Wall

Ground

Joint

IR-Sensors
Servo Motor 1 Servo Motor 2

IR-Sensors

Fig. 8.18: Schematic diagram of the ROCKING STAMPER. The pole is moved relative
to the trunk by the two servo motors. This causes the trunk to tilt so that the IR sensors to
measure a different distance to the ground/wall. The two sensors mounted at the front are
fixed and the two at the back can be manually flapped up and down.

The robot is equipped with a battery pack and an embedded controller board
holding an Atmega32 processor. Thus the robot could operate autonomously. In the
current implementation, however, the on-board hardware is only used to establish
a connection to a workstation, which runs the actual control algorithm for practical
reasons. From a performance point of view it is absolutely feasible to run the con-
trol algorithms on such an embedded processor, especially for a low-dimensional
system.

The robot can basically rock in two dimensions. The swing in the direction front-
back is more easily achieved because the body has a smoother curvature compared
to the sideways direction. By suitable combination of both rocking dimensions the
robot can perform a locomotion behavior. Another mode of operation occurs if the
pole is moved quickly around the center position, such that the massive weight stays
almost at a fixed position, while the trunk oscillates.

8.4.2 Experiments

When connecting the body to our controller we observe after a short time rocking
(oscillatory) as well as a walking-like behavior. The latter is caused by a rotational
mode of the pole with suitable phase shift. The emergence of these modes is a direct
consequence of the homeokinetic paradigm. In fact in these modes the controller
can—based on the current sensor values—evoke the maximum change in the sensor
values in one time step. The modes preferred by the physical systems, e. g. oscilla-
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tions at the eigenfrequencies, are excited for two reasons: First, the physical system
stabilizes against perturbations so that a better prediction is possible and second
these modes comply with the requirement of high activity. We are tempted to say
that the controller develops a “feeling” for the body.

(a) (b)

Video 8.9: Sensitivity and tolerance to sensor failure. The two infrared sensors at the
back are mounted to the trunk with hinges so that their pitch can be changed during the
experiment. (a) The robot is perturbed by moving the hand into the sensor range. The robot
reacts immediately by moving the pole to the opposite side. (b) One of the sensors gets
disabled and enabled by a paper hull. The robot adapts to the new situation quickly and
reenters a rocking mode. The videos can be watched at http://playfulmachines.
com.

In Video 8.9 the behaving robot can be observed. It is demonstrate that the robot
remains sensitive to its sensors (Video 8.9(a)). The hand of the operator is moved
into the infrared sensor range such that its values are changed and an immediate re-
action of the robot follows. Also a quick adaptation to new situations is observed, for
instance by disabling a sensor or changing the sensor setup during the experiment,
see Video 8.9(b). In both cases the robot finds quickly back to an active rocking
behavior. Sometimes the robot enters a locomotive behavior that is achieved by a
cyclic movement of the pole, see Video 8.10. These experiments are interesting in
that, despite the extremely nonlinear and non-deterministic behavior of the mechan-
ical system, the controller learns to produce a motion which probes the possibilities
of its body in a more or less controlled manner.

Let us now have a close look at the data to understand what happens. To make it
easier we use the case where only the two front infrared sensors are used as depicted
in Fig. 8.17. After initialization, we at first have subcritical values for the feedback
strength of the sensorimotor loop so that the influence of the noise is damped and
we observe only small fluctuations of the pole position. The learning dynamics in-
creases the values of the controller parameters C and therefore the pole movements
become stronger. Eventually the bifurcation point (Sect. 7.1.2) is reached and an (ir-
regular) oscillatory motion sets in. In Fig. 8.19 the behavior, reflected by the sensor
readings, and the parameter adaptation are displayed. It is insightful to take a closer

http://playfulmachines.com/videos.html#vid:stamper:sensitivity:a
http://playfulmachines.com/videos.html#vid:stamper:sensitivity:b
http://playfulmachines.com/videos.html#vid:stamper:sensitivity
http://playfulmachines.com/videos.html#vid:stamper:sensitivity
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Video 8.10: Walk-like behavior of the ROCKING STAMPER. The robot rocks in a way
that slow forward locomotion occurs. The first three frames (from left to right) show
one full swing. The remaining ones show how the robot travels. Frames times relative
to the first frame: 0.5, 0.9, 3.2, and 18 sec. The video can be watched at http://
playfulmachines.com.
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Fig. 8.19: The ROCKING STAMPER starts to rock. (a) Sensor values from left (x1)
and right (x2) infrared sensor. (b) Controller parameters C over time. The sensitization is
seen in the increase of |Ci j|. The controller matrix evolves to a structure that maps the
difference of both sensor values to servo 1 (y1) (C11 ≈−C21) and the sum of both sensors
to servo 2 (y2) (C21 ≈C22). The bias terms hi adapt such as to compensate for the positive
average of the sensor values.

look at the controller matrix. It indeed develops to a filter for the sensor values,
such that both degrees of freedom are separated. The first motor neuron receives
the difference between both sensor values, which corresponds to the sideways pitch
of the robot. This is exactly the direction influenced by the first servo motor. The
second motor neuron received the sum of both sensor values, which fits to front-
and-back direction induced by the second servo motor. To summarize, the controller
autonomously adapts from a unit initialization to a specific structure suitable for the
particular system under control and manages to excite various modes of behavior at
the natural frequencies of the hardware.

In order to demonstrate the environment related nature of the emerging behaviors
we put the performing robot into a corner where the infrared sensors measure the
distance to the wall, which is much shorter and also has a different characteristics,
see Fig. 8.18. As a consequence the robot became calm for a short time. Then the
parameters adapt to the new situation, so that again an oscillatory behavior sets in,
see Fig. 8.20. The same adaptation scenario occurred when the robot was manually
moved away from the corner.

http://playfulmachines.com/videos.html#vid:stamper:walk
http://playfulmachines.com/videos.html#vid:stamper:walk
http://playfulmachines.com/videos.html#vid:stamper:walk
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Fig. 8.20: Environment sensitive behavior of the ROCKING STAMPER. Evolution of
(a) sensor values from left and right infrared sensor, and (b) parameters of the controller.
Until second 64 we observed rocking (oscillatory) motion with a short break around sec-
ond 48. Then the robot was manually set into a corner. The infrared sensors measure much
shorter distances since they see the walls instead of the ground. At second 88 the robot
was pulled back into free space. After each change of the environment the robot was calm
for a while (low sensor fluctuation) and probed the new environment, however, after a
short time the robot rocked again.

8.5 BARREL

The simultaneous learning of both model and controller from the time-loop error is
also the source of creativity in handling unexpected situations. For illustration we
consider the BARREL again, see Sects. 3.2 and 7.3.3. The robot was seen to produce
interesting rolling modes and other behaviors, which however more or less rely on
the fact that getting a barrel to roll is quite “cheap” since this is the most natural
motion when lying on a surface.

8.5.1 Creativity in New Situations

What happens if the BARREL is put upright on the surface? This is a completely
new situation, which does not fit very well into the picture. The problem is, that the
internal axes are now horizontal so that the sensor values are equal to zero (apart
from some small noise) and thus there is no reaction of the sensors to the motor
actions. Nevertheless, if the approach disposes of some intrinsic creativity it should
find a way out towards new activity. Video 8.11 shows one possible development in
such a situation. After some time the motors start a kind of jiggling motion, which
is essentially largely amplified sensor noise. But as soon as the BARREL starts to
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Video 8.11: Creativity in unexpected situations. The BARREL was put into an upright
position by an external force about 10 seconds ago. Internal axes are horizontal now so
that the sensor values, the inclination of the internal axes, are zero apart from some small
sensor noise. The forward model does not get any reliable information in this situation so
that rapid forgetting sets in. This is counteracted by the controller, which increases weights
so that small perturbations are amplified. Note that the parameters are quite shaken at the
beginning of the clip due to the moving of the barrel. After some time the motion of
the internal weights become so strong that the BARREL is tossed over. The dynamics of
the parameters of the model and the controller can be followed in the panels at the left
and right upper corners, respectively. The panels depict the course of the parameters in
a time window of 250 steps corresponding to about 10 sec. Note that the scales of the
panels change, in particular the model parameters change by two orders of magnitude.
The rapidly oscillating parameters are the bias terms of both model and controller. The
video can be watched at http://playfulmachines.com.

give a definite reaction by whipping a little bit, the learning system synchronizes
and amplifies the swaying motion of the body. As a consequence, the BARREL is
falling over and now is free to go into a rolling mode again.

The reason for the strong amplification of the sensor noise is the decay of the
forward model, which does not receive any reliable information. The controller
counteracts this by increasing its weights. The amplification of the sensor noise
in these situations can be enhanced with the creativity parameter introduced in
Sect. 15.1.1.3 (p. 264), which makes use of the degenerated forward model.

This is not yet the full story. One can, out of this impasse situation, also observe
the emergence of a new mode, a kind of precession of the BARREL which requires a
high degree of sensorimotor coordination, as presented in Video 8.12. Nevertheless,
the mode is quite stable and can last over a long time, about five minutes real time
in this particular case. This mode is a truly emerging phenomenon that is produced
through the interaction of the learning dynamics with the specific embodiment in the
given physical situation. Note again, that both controller and forward model receive
nothing but the inclinations of the internal axes so that the physical state of the body
remains widely obscure to the “brain.” In particular, there is no information about
being put upright.

Experiment 8.2: Precession mode BARREL. Creativity in unpredictable situations.

In the simulation Homeokinetic control of BARREL(upright) the robot is in an upright position. In Video 8.11 the con-
troller gets negative diagonal elements such that we initialized here with C11 =C22 =−0.1 and C12,C21 ∈ [−0.1,0.1]
randomly chosen. Observe the parameters evolution with the GUILOGGER and remember that you can speed up or
slow down the simulation. If the robot manages to get free you can try to put it up again using the external forces
(<Ctrl>+Mouse).

http://playfulmachines.com/videos.html#vid:barrel:whipping
http://playfulmachines.com/videos.html#vid:barrel:whipping
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Video 8.12: Emergence of nontrivial modes — Precession of the BARREL. Out of
the upright position there are different modes that can emerge. In the video you see the
emergence of a precession mode which lasts for more than five minutes. Parameter and
model dynamics are depicted in the panels in the right and left upper corners (swapped
w. r. t. Video 8.11). Note that the scales of the panels change. The video can be watched at
http://playfulmachines.com.

Video 8.13: Decay of nontrivial modes. One special feature of our approach is that
modes do not last forever, instead the simultaneous learning of model and controller most
often leads to a slow change of the parameters so that the system leaves the mode. In
the present case, the precession mode, after lasting for about five minutes decays sponta-
neously. The parameter changes are most prominently in the diagonal elements of both the
model (left) and the controller (right panel) depicted by the red and purple lines (which
almost coincide). The video can be watched at http://playfulmachines.com.

The transient nature of emerging behaviors is nicely demonstrated by these ex-
periments. For instance, Video 8.13 shows the decay of a precession mode after
existing several minutes. The behavior of the parameters of both the controller and
the forward model strongly suggests a systematic tendency towards the decay of
the mode. This phenomenon is also observed in higher dimensional systems and is
seen as a decisive advantage over the common dynamical system approaches which
usually try to associate behaviors (or cognitive states) with stable attractors, instead
of transients. In the attractor case exists not natural way out of a behavior in contrast
to the transient dynamics.

8.5.2 Creativity Using the Real BARREL

A real physical counterpart to the BARREL was recently constructed by Wolfgang
Rabe and colleagues at the University Leipzig, for what we are very grateful. Here
we will present our first results with the robot. It consists like the simulated version

http://playfulmachines.com/videos.html#vid:barrel:precession
http://playfulmachines.com/videos.html#vid:barrel:precession
http://playfulmachines.com/videos.html#vid:barrel:precession1
http://playfulmachines.com/videos.html#vid:barrel:precession1
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Fig. 8.21: Real BARREL. The robot was built by Wolfgang Rabe and Frank Güttler,
Universität Leipzig.

of a cylindrical hull and two massive weights that are moved by step-motor (actually
the motors are the weights) along sliders. Obviously, the parts cannot penetrate each
other, such that the axes are offset, see Fig. 8.21.

The motor values control the positions of the motors along their axis. The robot
is equipped with a 3-axes acceleration sensor (see Sect. 8.1.1 for details), where we
use only the x−y components along the slider axes. The sensor values are an overlap
of the acceleration caused by the earth gravitation and the accelerations caused by
the movement of the robot itself, see also Sect. 8.1.1. The former provides a very
similar measure to the simulated orientation sensors, whereas the latter also provides
some feedback from quick movements of the motors.

We connected our controller to the robot and put the barrel upright on the floor. In
contrast to the soft ground in the simulation, where a strong mass movement causes
a small tilting of the robot, the physical floor is very hard, such that no feedback

(a) (b)

Video 8.14: Creativity in unexpected situations. (a) Robot with flat lower surface. The
floor is very hard in comparison to the floor in the simulations above, such that the robot
cannot get any feedback from the actions. If we push the robot by hand it starts to whip
along the lower rim. (b) A small ring is added at the bottom of the robot, such that it
can easier get into motion. The robot performs similarly to the simulated one. Note, the
maximal amplitude of the moving weights was manually adjusted such that the robot does
not flip over. The videos can be watched at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:realbarrel:precession:a
http://playfulmachines.com/videos.html#vid:realbarrel:precession:b
http://playfulmachines.com/videos.html#vid:realbarrel:precession
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of the actions is provided. In this situation we push the robot by hand a little bit,
see Video 8.14(a). When we change the construction of the robot a little bit, such
that the standing surface is not flat but has a small distance ring in the center, the
robot starts to enter the precession mode more easily as shown in Video 8.14(b).
The corresponding sensor data is plotted in Fig. 8.22.
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Fig. 8.22: Real BARREL in precession mode. Sensor values (acceleration sensors) dur-
ing the experiment, see Video 8.14(a). The robot is slightly pushed at sec. 26 and a bit
stronger at sec. 37. The oscillations are amplified and a precession mode with different
intensity is observed.

8.6 Summary

We have considered the homeokinetic control of various real and simulated robots.
They possess all a vastly different morphology, but have in common to be com-
pliant to physical forces. In all cases active and smooth behavior emerged, which
can be characterized as playful. Even with the rather crazy devices like the ROCK-
ING STAMPER or the SEMNI we find the emergence of coordinated behavior most
prominently at the natural frequencies of the body. We cannot stress enough that
there are no specific goal, just the minimizing of the TLE. By now it should be clear
that the seemingly oversimplified architecture of the controller is in fact sufficient
for the control of many robots, due to the fast synaptic dynamics and the exploita-
tion of the embodiment. The latter implies an export of computation complexity
to the interaction of the brain-body system in the spirit of morphological computa-
tion [125, 132, 133], see also [131].
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Model Learning

Abstract: This chapter discusses several aspects concerning the simultaneous learning of
controller and internal model. We start with discussing the bootstrapping dilemma arising
in this context and the consequences of insufficient sampling. It appears that homeokinetic
learning solves these problems naturally, which we illustrate in several examples. Further,
we extend the implementation of the internal model by a sensor-branch. This is seen to in-
crease the applicability of the homeokinetic controller because it allows for situations where
the sensor values are subject to an action-independent dynamics. The extended model is
prone to an ambiguity in the learning process, which can lead to instabilities. The prob-
lem can be resolved if the time-loop error is used as an additional objective for the model
learning.

Internal models of the interaction with the environment form an essential part
of many natural and artificial systems. For instance the human motor system that
has been investigated for a long time, see e. g. [187, 188], is supposed to possesses
a variety of internal models. Among them are so called forward models that pre-
dict the outcome of actions and inverse models that infer the required actions from
desired states. This is supported by recent experiments that provided increasing ev-
idence of the widespread use of predictive models in the human brain, see [35] for
a short review. It seems quite clear that, once internal models are established, they
can be used for planning ahead by means of internal (or mental) simulation of the
sensorimotor dynamics and for detecting unexpected situations.

In our setting the forward model is given by (Eq. (3.6) in Sect. 3.1)

xt+1 = M (xt ,yt)+ξt+1. (9.1)

which relates the current motor signal yt (efference copy, in biological terms) and
the current sensor values xt (afferences) to the estimated sensory feedback M(xt ,yt)
(corollary discharges) and is thus in direct correspondence to the computational
models of the human motor system. As in the human brain, our forward model is
adaptive in order to cope with changes in the motor system and it seems obvious to
use the sensory discrepancy ξ between estimated and real feedback as a source of
learning.

183
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Internal models are also one of the prerequisites for a robot to become a cog-
nitive system. The general aim of conventional robotics approaches is to learn the
internal model as complete as possible. This is of particular interest for planning of
action sequences for navigation or reaching movements in structured environments.
Typically the internal model would be trained by trying random actions or action
sequences. However, in high dimensional systems, such as complex robots or even
humans where the individual degrees-of-freedom are not independent of each other,
a purely random exploration is infeasible because of the curse of dimensionality
well known from statistical learning theory.

Alternative approaches to complete internal representations are the attempts to
build an internal model by a physics-simulation engine like the one used in our sim-
ulator. In this way the physical simulation runs in parallel on a computer [21]. This
reduces successful modeling in principle to a question of resources. Although quite
successful in recent applications, the approach faces both practical and conceptual
difficulties. In many robotics systems, the practical problem is how to find the map-
ping from reality to the internal representation. Our simple BARREL, for instance,
is described in the simulation by 8 differential equations and collision equations
(contact with other objects), a dynamical system capable of all kinds of dynami-
cal patterns reaching from pure fixed point attractors to non-trivial orbits and even
chaos. Learning these differential equations from scratch by way of examples would
require to get the robot into all kinds of dynamical patterns by appropriate control
commands. However, we have seen that it is already difficult to get it into a high ve-
locity rolling mode by open loop control. This leads us to the conceptual difficulty—
in order to get the system by classical control paradigms into such complex modes,
we have to already know the dynamics of the system quite well, far beyond the stage
at which the learning would have led us so far.

The role of the forward model in the homeokinetic learning context differs in
several respects from conventional robotics approaches. In particular, the aim is ac-
tually not to represent the full spectrum of future outcomes of current actions, but
instead to provide a qualitative information on the current mode of behavior. Com-
prehensive competencies are substituted by flexibility, which is realized by a rapid
learning strategy on simple structures. The “normal” task of the forward model con-
sists in giving a coarse directional and/or qualitative information on the landscape
of the prediction error. The reduction of the competencies of the model is even a fa-
vorable component supporting the explorative nature of the homeokinetic learning
procedure. We will consider this specific effect of the interplay between model and
controller in the next section.

In the most simple setting of the homeokinetic controller, we use a forward
model, which predicts the next sensor state only, based on the motor signals (ef-
ference copies). There are situations where this oversimplified model is not suffi-
cient and may lead to a runaway effect of the controller parameters. A more general
definition of the internal model includes a sensor branch and helps to avoid the
divergence problem. However, it also introduces an ambiguity problem due to the
independent dynamics in the world, which we will treat in Sect. 9.2.
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9.1 Cognitive Deprivation and Informative Actions

In this section we want to focus in particular on the consequences of the simultane-
ous learning of the controller and the internal forward model, which faces among
others the so-called cognitive bootstrapping problem or learning paradox [16, 53,
56, 158]. Starting at a “do nothing” and “know nothing” initialization of the con-
troller and the self model, respectively, the robot does not have any information
about the structure and dynamics of its body, so that the forward model has to learn
this from scratch. However, in order to learn effectively, the controls have to be
informative so that the forward model is provided with the sensorimotor patterns
necessary for its improvement. On the other hand, these actions require a certain
knowledge of the reactions of the body—information is acquired best by informa-
tive actions.

This bootstrapping situation in principle reappears on all stages of the devel-
opmental process. We focus here, as before, on the low-level feedback loops to
achieve self-exploration of the physical properties of the body. In this context the
controller should issue just those actions that contribute most to the information
gain of the model, since random actions are not suitable to effectively explore the
behavior space in high-dimensional systems. First, we will see that a controller elic-
iting only actions confined to a subspace causes a deprivation of the forward model.
Second, homeokinetic control will be seen to naturally produce informative actions
that cause a quick recovery of the model.

In the following we give a simple example for illustration.

9.1.1 Demonstration by the TWOWHEELED

Let us consider the TWOWHEELED (Sect. 6.4.1) to demonstrate the effects of de-
privation by restricted motor commands and the rapid recovery if the homeokinetic
learning is switched on.

The robot has two motors actuating the wheels and two sensors measuring the
wheel velocities. To illustrate the effect we have to restrict the controller in some
way. We use here our standard controller K (x) = g(Cx+h) but restrict C as

C =Crestr = upp> with p =
1√
2

(
1
1

)
(9.2)

and u = 1.1 so that the sensorimotor loop is slightly supercritical. The matrix C is a
projector into the space spanned by p, hence both wheels receive the same input and
the robot will perform only straight forward and backward motion. The controller is
fixed at the beginning of the experiment (no learning dynamics by putting εc = 0). In
order to let the robot go forward and backward the bias h was modulated with a sine
signal. As expected, we observe a degeneration of the forward model1, see Fig. 9.1,

1 As usual a small damping is added to the learning rule, see Eq. (9.4).
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Fig. 9.1: Cognitive deprivation and recovery in the case of a TWOWHEELED. The
first 103 sec the robot was controlled by a restricted controller Eq. (9.2) with sine mod-
ulated h (oscillating forward/backward). After that the learning of the controller was ac-
tivated, marked with a dashed line. (a) Model matrix A and its smallest eigenvalue λ A

2 .
The matrix degenerates until the controller is activated and becomes then approximately
a unit matrix; (b) Controller Matrix C with smallest eigenvalue λC

2 ; (c) Motor commands
for left and right wheel y0, y1, and the steering value y0− y1. The robot performs mainly
rotational actions after the activation of learning. Parameters: εc,εa = 0.01, γd = 0.0002,
square root of error (Sect. 15.1.1.6), update rate 100 Hz.

which converges towards a projector on the vector p. Eventually, the learning of the
controller was activated by setting εc = 0.01 and the external modulation of the bias
h was switched off. After a short recovery phase, the robot starts to move again,
now controlled by the homeokinetic learning dynamics. Interestingly, the controller
issues mainly motor commands lying in the subspace orthogonal to p. This means
that the robot is rotating as if it aims at exploring the mode previously neglected.
This exploration continues for about 40 sec until the forward model is converged
to the true relationship and therewith both straight and rotational modes occur with
about equal probability. The behavior can be seen in Video 9.1 and the parameter
dynamics is displayed in Fig. 9.1. Both effects, the deprivation and the rapid re-
covery by homeokinetic learning can be understood analytically in the following
way.
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Video 9.1: Deprivation of internal for-
ward model and recovery shown with
the TWOWHEELED. The controller was
first restricted to only straight driving. The
model degenerates as shown in Fig. 9.1. Af-
ter the learning is switched on (robot turns
green) the robot mainly rotates at the spot
for a while before driving around normally.
The video can be watched at http://
playfulmachines.com.

9.1.2 Deprivation Effect

Let us study first how the forward model is effected if the controller elicits only
a limited spectrum of actions. As a reaction to this restriction the forward model
undergoes a process that we call cognitive deprivation. The term “cognitive” is used
because the model reflects a certain ability of the robot to perceive and represent the
reactions of the world in the current situation—so cognition in a minimalist sense.

Consider the learning rule for the simple forward model M (x,y) = Ay. Including
a small damping term γd , the learning rule reads, see Eq. (4.5),

1
εA

∆A = ξt+1y>t − γdA . (9.3)

For the sake of demonstrating the deprivation effect it suffices to consider the most
simple case of a linear world with response matrix A(w) and noise ς so that the true
world dynamics is

xt+1 = A(w)yt + ςt+1

and the prediction error in Eq. (9.3) is ξt+1 = δAyt + ςt+1 with δA =
(

A(w)−A
)

.
With independent and zero-mean noise we obtain, in the average over a time window
of length T , the following average gradient rule (the noise is assumed to average to
zero)

1
εA
〈∆A〉= δAP− γdA (9.4)

where

P =
1
T

>
∑
t=0

yty>t (9.5)

is the covariance matrix of the controller outputs, assuming 〈yt〉>t=0 = 0 for simplic-
ity. The learning dynamics is stationary at ∆A = 0 so that

A = A(w) 1
P+ γdI

P .

http://playfulmachines.com/videos.html#vid:cogdepr_2wheeled
http://playfulmachines.com/videos.html#vid:cogdepr_2wheeled
http://playfulmachines.com/videos.html#vid:cogdepr_2wheeled
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Fig. 9.2: Progressive deprivation of the forward model when a robot is driven by
a restricted controller. The controller is restricted as in Eq. (9.9). The eigenvector in
the nullspace of the controller matrix C is denoted by un and the eigenvector belong-
ing to the largest eigenvalue of C is u1. Plotted is the projection of the forward model
matrix A onto these directions in logarithmic scale. Robots: TWOWHEELED—2 Degrees
of Freedom (DoF), SHORT CIRCUIT—10 DoF, SNAKE (planar)—15 DoF (Sect. 9.1.4).
SHORT CIRCUIT is the idealized world condition xt+1 = yt + ςt . There is a clear expo-
nential decay for |Aun| expressing the deprivation of the forward model, except in the
case the controller is not restricted (learned normally) (dash-dotted cyan). The projection
on the largest eigenvalue is not effected by the deprivation (dotted magenta). Parameters:
γd = 0.0002, εA = 0.01, update rate 100 Hz.

From this equation we see that A has the same nullspace as P. The matrix 1
P+γdI

P
produces finite projections into the nullspace of P (due to γd) and thus the original
nullspace of P is carried over to A. In this way the model degenerates if the controller
is restricted in the sense that it does not produce outputs y covering the whole space.

Note that also a nonlinear controller in the form y = g(Cx) will produce a non-
empty nullspace if the matrix C is not of full rank, such that the above proof also
holds. The progressive deprivation of the forward model in our setup for a restricted
controller is shown in Fig. 9.2 for several robots. In all cases an exponential decay of
the model in the restricted direction is observed. To conclude, if not all dimensions
of the action space are probed into from time to time, then the forward model will
become inaccurate for the unvisited subspaces.

9.1.3 Homeokinetic Learning and Bootstrapping

The degeneration of the forward model in the unexplored subregions of the state-
action space is a severe problem for any autonomous, self-learning system. On a
formal level, the challenge for the controller is to detect this deprivation of the for-
ward model and to issue motor commands which provide the necessary sensor-
action pairs (xt+1,yt) to correct the deficiency. However, in complex systems this
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procedure faces again the curse of dimension, since the sampling costs, if using
uninformed sampling, are growing exponentially with the dimension of the system.

On the contrary, all a simple internal model can learn is the behavior on low-
dimensional manifolds of the full space corresponding to certain modes of the sys-
tem. Hence, the challenge is not to completely explore the unknown but to find
out about different latent modes of the system that could be explored by the right
“informative” actions of the controller. Fortunately, homeokinetic learning provides
us, so to say for free, with just that feature, at least in a rudimentary way, as will be
demonstrated by the following arguments.

9.1.3.1 Bootstrapping as a High Temperature Effect

Let us consider now the TLE as introduced in Eq. (5.9) of Sect. 5.1.1

E = ξ>
1

LL>
ξ ,

and ask for the consequences of homeokinetic learning for the deprivation effect. In
order to discuss this in detail, we use polar matrix decomposition writing L = ΛU
with U an orthogonal and Λ a symmetric matrix, respectively, i. e. U−1 = U> and
Λ =Λ>. In order to keep the argument simple, we assume for the moment that there
is just one dimension heavily deprived, i. e. only the eigenvalue λn of Λ is closed to
zero and the others are around one. Using that Λ is symmetric, we may decompose
it as

Λ =
n

∑
i=1

λiuiu>i , (9.6)

where the λi are the (real) eigenvalues with the corresponding (real) eigenvector ui.
The effect of the eigenvalues in E is only reflected by the matrix LL> so that the
TLE in the leading term is given by

E ≈
∣∣u>n ξ

∣∣2
λ 2

n
. (9.7)

This shows that the TLE is increasing rapidly with growing deprivation (shrinking
λn). Moreover, the error is proportional to the projection of prediction error ξ onto
the deprived direction. Since the forward model has strong deficiencies in the de-
prived direction this will be large. Using the terminology introduced in Sect. 5.3.4
we may say that the deprivation is heating up any region of the error landscape that
corresponds to the deprived dimensions. Given the picture of learning as a diffusion
on the fluctuating error landscape, homeokinetic learning is expected to drive the
system out of the deprived regions already by virtue of the statistical effects.
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9.1.3.2 Effects on Learning

The consequences for the learning process can be worked out even more directly.
Either by means of Eq. (9.7) or by starting with the symmetric representation of the
general learning rule, see Eq. (5.17) that provides the update rule for any parameter
p of the controller. We immediately obtain the learning rule as

∆ p = εc

n

∑
k=1

∣∣ξ>uk
∣∣2

λ 3
k

∂λk

∂ p
. (9.8)

The expression shows how the deprived dimensions (with small λ ) dominate the
learning step. Updates in parameter space are driven by exactly those dimension
that are most damped in the current dynamics of the states. Furthermore, via the
quickly adapting parameters of the system, the eigenvectors of the deprived mode
will change themselves very rapidly with a direct effect on the updates given by
Eq. (9.8).

We may now provide some speculative arguments why, as stated above, this ex-
pression supports the self-amplification of latent modes of the system. Actually,
at first sight, the update is dominated by the sum of all small eigenvalues of the
Jacobian matrix of the system and especially by those that are subject to heavy
fluctuations, caused either by a lack of regularity in the dynamics or more impor-
tantly by the deficiencies of the forward model in the deprived dimensions. This
leads, besides the temperature effect, to further fluctuations of ∆ p realizing a more
or less random search in the deprived subspace. This will lead nowhere in a high
dimensional system. However, if one of the latent modes of the embodied system
is getting excited even very weakly, the prediction error will reflect this regularities,
such that the parameters dynamics can systematically amplify these modes and the
general tendency of the homeokinetic learning to increase the eigenvalues can pre-
vail. Admittedly, the argument is speculative but we are convinced that there is a
general tendency to follow that scheme of bootstrapping of low-dimensional modes
since it is observed in many ways in the practical applications.

An excellent example of the deprivation effect and the intrinsic bootstrapping
was already presented, namely the BARREL in an upright position, see Sect. 8.5.
There the deprivation was imposed onto the system by putting it into this physical
situation. Since no sensor reactions are observed the Jacobian degenerates in all
dimensions. The bootstrapping is first dominated by random actions, but as soon as
the robot’s body starts to slightly seesaw, the systematics is picked up and amplified.
Let us study the effect in more detail starting with a high-dimensional example.

9.1.4 Planar SNAKE

Let us now consider the planar SNAKE as depicted in Fig. 9.3 with 16 segments
and 15 joints. Each joint has one degree of freedom that is actuated by a servo
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Fig. 9.3: Planar SNAKE with
16 segments and 15 degrees
of freedom. In this experiment
it is fixated at the first segment
with a joint (white ring) and has
no friction with the ground.

motor. A motor value of zero corresponds to a straight configuration and −1 and
1 are associated with the fully deflected positions at ±90◦ off center. The robot is
underactuated, meaning the power of the motors is not sufficient to move the joints
independently of each other to any position. This effect is especially strong at the
joints in the middle of the robot. In order to change the joint angle, both halves of
the body have to be moved.

We assume again an artificial controller restriction and investigate the bootstrap-
ping after the release of the restriction in this high-dimensional case. We define the
direction of restriction by the vector p ∈ R15, with |p| = 1, where P = pp> is the
projection matrix into the subspace to be avoided. The restriction of the controller
is achieved by

Ct = (I−P)(Ct−1 +∆C)(I−P)> and ht = (I−P)(ht−1 +∆h) . (9.9)

0.1

1

0 100 200 300 400 500 600 700 800

time [sec]

|A p|
|C p|

Fig. 9.4: Cognitive deprivation and bootstrapping with the SNAKE. The vector p is
pointing in the deprived direction. After 120 sec the restriction of the controller (9.9) was
switched on and at second 360 the restriction was released again. A quick recovery is
observed. Settings: εC = εA = 0.01, γd = 0.0001, update rate 100 Hz, square root of error
(Sect. 15.1.1.6).
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Essentially the restriction is enforced after the parameter update each time step.
Hence, the adaptation of parameters C and h is still performed, but the compo-
nents corresponding to the p-space are projected away. In this example we use
pi =

1√
15
(−1)i, which corresponds to a zigzag posture of the robot. In Fig. 9.4 the

evolution of |C p| and |A p| are displayed, which are the lengths of the projections
of C and A into the space of P. After 120 sec the restriction of the controller was
switched on by constantly applying Eq. (9.9). One can see an exponential decay of
the forward model in the direction of p. At second 360 the restriction was released
and the controller matrix C quickly recovers (shows a large projection |Cp| into
the deprived space). The effectiveness of thereafter elicited actions is shown by the
rapid increase of the projections of the model matrix A.

9.1.5 SPHERICAL Robot in a Basin

Let us now consider another case where both deprivation and bootstrapping occur
in a way that is generic for homeokinetic learning. We want to take a closer look
at experiments with the SPHERICAL in a circular basin that was already described
in Sect. 8.2.3. Here we will focus on the development of the forward model and
the resulting actions. Let us shortly recall the behavior of the robot. After some
initial period we found the robot to roll roughly at a constant height for extended
periods of time. In these periods we observe a deprivation of the forward model. In
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Fig. 9.5: Behavior of the SPHERICAL in a basin. Note that the time axes are from
bottom to top. (a) Time evolution of λ A

3 , the smallest eigenvalue of the model matrix A;
(b-d) Time evolution of the power spectrum of the three sensor values over time. Each
row is the power spectrum of a certain time window. Consequent rows are overlapping.
Darker pixels stand for more energy. High frequency means here high velocity of the
robot. Parameters: εC = εA = 0.1, update rate 50 Hz.
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Fig. 9.5, the behavior of the robot is characterized using the power spectrum of the
sensor values and the smallest eigenvalue of the forward model. The initial phase is
of the same nature as on the flat surface, i. e. from time 0–80 one can see self-ex-
plorational modes, where different frequencies are probed. Then a stable rotational
mode emerged (time 80–110 and 140–170), which is the circulation in the basin
at a constant height, exhibited over many laps. The circulation mode is seen in the
power spectrum at the low frequency excitation. The high frequency excitations are
the movements of the axes of the robot due to the rolling and precession motion.
One can see that the value of the smallest eigenvalue λ A

3 of A decreases while the
robot stays in one mode of behavior, see Fig. 9.5(a). The smallest eigenvalue is a
measure for the degeneracy of the forward model, which deprives due to the restric-
tion to a specific mode of behavior. At time 115 the forward model matrix is close
to a singularity and the bootstrapping of new actions sets in. This period effectively
explores the deprived subspace such that the smallest eigenvalue of A is seen to
increase rapidly. The same starts again at time 140 and so forth.

In summary, the behavior of the SPHERICAL in the basin shows that the cognitive
deprivation effect occurs naturally in a behaving robot once a stable mode of behav-
ior persists for a longer time. However, with increasing deprivation homeokinetic
learning is found to induce an exploration of the deprived dimensions so that the
internal model is refreshed and eventually new modes of behavior can emerge.

9.1.6 Discussion

Model learning of high dimensional systems always faces the curse of dimension-
ality. The random sampling of actions is not very promising in such a setup. Addi-
tionally, in the closed loop setup with simultaneous learning of forward model and
controller, it is well possible that substantial subspaces in the sensor-action space
are not visited. We have shown analytically that a restricted controller leads to a
deprivation of the model. However, we found that the homeokinetic approach pro-
vides a natural solution for this problem. The controller generates explicitly motor
commands that are directed into the unknown regions of the sensor-action space.
More details may be found in [43].

9.2 Extending the Forward Model

Most of the considerations done so far are based on M (x,y) = Ay+ b so that the
forward model, as given by the matrix A and the vector b, reflects only the correla-
tions between motor and sensor values and some offset. However, this is often quite
unrealistic since the new sensor values may as well directly depend on the previous
ones. In the following we will define the extended model and discuss possible issues
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and formulate the extended learning rules. Before that we will look at an example
where the simple forward model causes problems.

9.2.1 Getting Misled by the Forward Model

Consider for example the SPHERICAL, see Sect. 8.2, when it is rolling down a slope.
The sensors of the robot measure the orientation of the axes with respect to the
ground. In this case the sensory dynamics is not caused by the robot actions, but
rather by an environmental circumstance. The simple forward model cannot capture
this, because it assumes a motor driven dynamics. A similar effect occurs if the
SPHERICAL is equipped with light internal masses compared to the weight of its
hull and is placed on level ground. In the experiments, after the robot acquired some
rolling velocity, the sensory dynamics is again dominated by the current motion and
is influenced only little by the current actions, due to the large inertia effects. In
that hardware configuration the learning dynamics can become unstable, such that a
diverging error value is observed. The divergence can happen even with comparably
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Fig. 9.6: Divergent error value for the SPHERICAL with light internal masses. De-
spite the low learning rates εc = εA = 0.01 the parameters fluctuate heavily and the forward
model collapses. An irregular behavior is observed. (a) Motor commands and averaged
error (E) (scaled to fit in the plot); (b) Diagonal elements of controller matrix C and for-
ward model matrix A. Parameters: εc = εA = 0.01, update rate: 100 Hz, weight of internal
masses: 1/2 of hull-mass.
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low learning rates of εc = 0.01, in contrast to the normally used 0.1. Figure 9.6
illustrates the irregular behavior of the robot and the parameter evolution. The high
error values are the result of the intrinsic dynamics of the sensor values when the
body is rolling, which cannot be captured by the simple forward model.

9.2.2 Including the Sensor Branch

A simple extension of our forward model M(x,y) = Ay+b (4.2) reads

M (x,y) = Ay+Sx+b (9.10)

which includes the sensor-to-sensor mapping by the new matrix S. The sensorimotor
map (dynamics model) is now

ψ (x) = Ag(Cx+h)+Sx+b (9.11)

and the Jacobian is simply
L = AG′C+S , (9.12)

where G′i j = δi jg′i(Cx+ h) (as before). Due to the matrix S the forward model M
represents the dynamics in the world. While the learning rules for the parameters A
and b remain the same, see Eqs. (4.5, 4.6), S is updated as

∆S = εAξ x> (9.13)

In the homeokinetic learning rules, we have to invert L in order to compute χ and
v, see Sect. 5.2.1 (p. 84). In most practical applications, S can not be singular, since
it connects two closely related vectors. Hence, the inversion should be no problem
in the mathematical sense, even if the sensors outnumber the motors, which is a
common cause of divergences in the case without S. Still, the inversion in the full
sensor space may be troublesome if the number of sensors is very high. In this
case we propose to use generalized pseudoinverses as a convenient approximation,
simply in order to reduce numerical effort, i. e. to reduce matrix inversions to the
motor space (m×m). These technicalities are dealt with in Sect. 15.4 (p. 277) so
that we do not have to go into these details here.

9.2.3 Ambiguity of the Extended Model

Including the sensor branch introduces additional parameters for modeling the re-
lation between the input and output vectors. This may lead to ambiguities, detailed
in Sect. 9.A, with serious impacts on the model learning and therewith on the con-
troller as well. In order to understand what happens, we can consider the model as
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the combination of two competing branches, namely the motor branch (Ay) and the
sensor branch (Sx). Depending on the degree of fluctuations in the respective parts,
the updates may be of different nature. In typical cases, the update ∆S of the sen-
sor branch is very steady since S connects the two closely related state vectors xt
and xt+1, which are often approximately mapped to each other by a unit matrix. On
the contrary, A describes the correlation between motor and sensor values that may
heavily change in the behaving robot so that actually A is fluctuating much more
than S. Therefore, given the ambiguity, the sensor branch will dominate the learning
steps so that the motor branch may be modeled very badly. This is rather disastrous
for the homeokinetic learning procedure so that we have to resolve this ambiguity
in a suitable way. In the following we will propose one of many ways to deal with
this. More options may be found in [102].

9.2.4 Increasing Awareness of Causality

On the more conceptual level the ambiguity can be resolved by differently inter-
preting the sensor values. One extreme is to consider the sensor values to be mostly
determined by the intrinsic dynamics of the world and the other extreme is to as-
sume the sensor values are fully determined by the actions of the agent. The latter is
actually the approach we choose if the simple forward model (4.2) without the sen-
sor branch is used. The true correspondence is typically somewhere between these
extremes, however it cannot be determined from the perspective of the agents in the
closed loop setup. In order to estimate the consequences of its own actions appropri-
ately the first extreme is not very productive since then the agent does not “believe”
in the effectiveness and/or causality of its actions.

With active agents, we argue that it is reasonable to postulate a substantial bias
towards the awareness of causality between actions and sensations. This can be
achieved by trying to represent the causal effects of the action preferably with the
motor branch (given by the matrix A). Very useful in this respect is to derive the
learning rule for A not based on the prediction error ‖ξ‖2, as done so far, but directly
on the TLE (5.9). In this way, the implicit dependence of the TLE on the A matrix
is included into the learning dynamics, which was neglected before. Why would
this be helpful in resolving the ambiguity? The TLE increases the sensitivity of
the network to its inputs. In this way the matrix A is driven to grasp most of the
correlations between motors and sensors. The gradient descent of the TLE w. r. t. to
A yields

∆A = εAχ>
∂L
∂A

v+ εAχ>
∂ψ
∂A

, (9.14)

where we use ξ = xt+1−ψ(xt). In our setting (9.11), the update rule for A is ob-
tained explicitly as

∆A = εAχ ŷ> , (9.15)

where
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ŷ = y+ρAG′Cv (9.16)

with the additional factor ρA that allows to weight the influence of the new term. In
comparison to the usual delta rule for learning A (∆A = εAξ y>, Eq. (4.5)) we have
two modifications, one is the replacement of ξ with χ =

(
LL>

)−1 ξ and the other
one is the shift of the controller output by the term ρAG′Cv. What is the meaning
of the latter? In the model without S we have2 G′Cv = η = A−1ξ , which is the
reconstructed error ξ at the input of the model. The fact that now the inverse of A
is featuring in the update rule will increase the sensitivity of the model to its motor
inputs.

This solution of the ambiguity problem consists in strengthening the connec-
tions in the motor branch independently of the actual causal relation. Remember,
that the controller is generally adapted to make the internal representation of the
sensor dynamics match the actual sensor dynamics (especially if the extension in
Sect. 15.1.1.4 is used). If the internal model is adapted such that an external dynam-
ics is explained in terms of its own actions then the controller tends to produce those
actions that are coherent with this model.

9.2.5 Experiment with the SPHERICAL Robot

In Sect. 9.2.1 we have seen that the control of the SPHERICAL with small internal
masses can be a problem if the simple forward model is used. In the following
experiment the extended forward model (9.10) is used and the robot will be seen
to behave smoothly. The extended model is able to make better predictions already
before stable modes are found. This is especially true with systems that are only
partially controlled by the actions due to a substantial momentum of the physical
system, like the currently considered SPHERICAL.

The evolution of the behavior and the parameters during the experiment are de-
picted in Fig. 9.7. In contrast to the earlier experiment (Fig. 9.6) without the ex-
tended model, the error now falls to a low value. The robot remains in a certain
rolling mode for a while until the behavior is changed. At theses points in time the
error goes up and is then decreased again. A more detailed description of the behav-
ior and a video is located in Sect. 8.2 (p. 162). Let us here take a closer look at the
parameter dynamics. Even though the S matrix was initialized with zero we observe
in the beginning that S captures a substantial part of the dynamics, see Fig. 9.7(d).
Then the robot is controlled so that one of the internal axes is the rotation axis
(behaviors A-C). During this time the model matrix A is clearly seen to deprive
(smallest eigenvalue λ A

3 decreases), because the movements of the mass along the
rotation axis have only little effect on the sensor value due to gyroscopic and inertia
effects. At the same time the controller is increasingly destabilized (Fig. 9.7(c)) un-
til the behavioral mode becomes unstable and a different mode is found. The model

2 We assume normal inversion of the matrices or the sequential strategy for the pseudoinverse,
Eq. (15.49).
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Fig. 9.7: Smoothly behaving SPHERICAL using the extended forward model. The
TLE has a low value and the behavior is smooth but still diverse. (a) Sketch of four typical
behaviors (A-D). (b) Amplitude of motor commands and the error (scaled for visibility)
are averaged over 10 and 30 sec. Corresponding behaviors are indicated with letters A-D.
(c) Diagonals and two non-diagonal elements of the controller matrix C. (d) Eigenvalues
of the forward model matrices A and S. Parameters: update rate 100Hz, εc = εA = 0.1,
γd = 0.0001, ρA = 0.1.
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is seen to recover and the game starts anew. Thus we have yet another example of
the deprivation and bootstrapping effect.

To summarize, the extended forward model leads to a decreased prediction er-
ror, resulting in a smooth and stable parameter dynamics. Using the TLE also for
learning the motor branch of the internal model increases the awareness of causality
which is important for homeokinetic learning.

9.3 Summary

The learning of internal models in high-dimensional systems faces the curse of di-
mensionality. The random sampling of actions is not very promising in such a setup.
Additionally, in the closed loop setup, with simultaneous learning of internal model
and controller, it is well possible that substantial subspaces in the sensor-action
space are not visited, such that the model degenerates. However, we found that the
homeokinetic learning provides a natural solution for this problem. The controller
generates explicitly motor commands that are directed into the unknown regions of
the sensor-action space, see for instance the experiment with the SNAKE robot.

We also took a look at an extended forward model, that uses apart from the motor
values also previous sensor values for prediction. Since it models also the dynamics
in the world it is called forward model. The new approach creates an ambiguity
in the learning such that possibly unfavorable configurations are reached. A simple
solution for this problem is to learn parts of the internal model (the motor branch)
using the TLE. The extended forward model enables the homeokinetic controller to
handle systems with large inertial effects and to better cope with different sensor
types.

Appendix 9.A Ambiguities in the Sensorimotor Loop

The occurrence of ambiguities in the sensorimotor loop are obvious if the sensor
branch is included since we have now more parameters (matrix elements of A and
S) than equations for finding the correct matrices. As a demonstration let us consider
the case of a linear world like

xt+1 = A(w)yt +S(w)xt + ςt+1 (9.17)

with some zero mean noise ς , A(w) representing the response of the world on the
motor values y and S(w) the direct influence of previous sensor values on the new
ones. Using the model from Eq. (9.10)

xt+1 = Ayt +Sxt +b+ξt+1 (9.18)

with b = 0 for simplicity, the learning steps are (omitting the time indices)
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∆A = εξ y> and ∆S = εξ x> . (9.19)

The effect is already obvious if we use the most simple case of a linear controller3

as
y =Cx

so that
ξt+1 = (δAC+δS)xt + ςt+1 = δPxt + ςt+1,

where δA = (A(w)−A), δS = (S(w)−S), and δP = (δAC+δS). In the average over
time the noise ς vanishes and we obtain the prediction error Epred = ξ>ξ as

2
〈
Epred〉= x>δPx+

〈
ς>ς

〉
. (9.20)

We have to consider this over a set of states x spanning the whole state space, so that
Epred is minimal only if δP = 0, i. e.

AC+S = A(w)C+S(w) (9.21)

which has arbitrarily many solutions for A and S.

3 The considerations are also true for more complex controllers.
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High-Dimensional Robotic Systems

Abstract: This chapter contains many applications of homeokinetic learning to high-di-
mensional robotic systems. The examples chosen for investigation and proposed as exper-
iments to the reader comprise various robots ranging from dog-like, to snake-like up to
humanoid robots in different environmental situations. The aim of the experiments is to un-
derstand how the controller can learn to “feel” the specific physical properties of the body
in its environment and manages to get in a kind of functional resonance with the physical
system. In order to better bring out the characteristics of homeokinetic learning in these
systems, we use a kind of physical scaffolding, for instance suspending the HUMANOID
like a bungee jumper, putting it in the RHOENRAD, or hanging it at the high bar. Interest-
ingly, in all situations the robots develop whole-body motion patterns that seemingly are
related to the specific environmental situation: the DOG starts playing with a barrier even-
tually jumping or climbing over it; the SNAKE develops coiling and jumping modes; we
observe emerging climbing behaviors of a HUMANOID like trying to get out of a pit; and
wrestling like scenarios if a HUMANOID is encountering a companion. Eventually, in our
robotic zoo all kinds of robots are brought together so that homeokinesis can prove its ro-
bustness against heavy interactions with other robots or dynamical objects. Essentially this
chapter provides a phenomenological overview and invites to play around with numerous
simulations to see the “playful machine” in action.

We start now with applying the algorithms of homeokinetic learning developed
in the previous chapters to physical systems of higher dimensionality. In Video 10.1
we metaphorically sketch the challenge of self-organizing robot behavior. The video
shows three robots of very different morphology but with the same number of mo-
tors and proprioceptive sensors (joint angles), reporting the results of motor actions
back to the brain. Each of these robots has a brain of its own but the brains are identi-
cal in structure and are learning by the same homeokinetic learning rule. The robots
are “thrown” into the world and left to themselves. We already know that they will
come to activity by the homeokinetic learning. However, what will the emerging
motion patterns look like?

The challenge for true self-organization is the emergence of embodiment-spe-
cific motion patterns, i. e. that each robot develops an individual way for self-actu-
alization depending not only on its morphology but also on its interaction with the
environment encountered in the course of time. This is the “acid test” any self-or-
ganization paradigm of embodied robot development has to pass. Unfortunately, it

201
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is difficult to develop an effective measure for these features so that an assessment
will always depend on subjective factors. This can be helped a little by designing
experiments so that the specific features can develop.

In the experiment shown in Video 10.1 as in many of the examples of this chap-
ter, we use the standard setting of a one-layer network for both the controller and
the model together with the basic learning rules as given in Sect. 5.2.2 (p. 85),
Eqs. (5.22, 5.23). We will indicate explicitly in the experiments which learning rule
is being used.

Video 10.1: The challenge for self-organization. Emergence of embodiment-specific be-
havior in robots with different morphology but identical brains. The video can be watched
at http://playfulmachines.com.

Initialization
In most experiments, the robot is initialized in a “do nothing” state so that in this
phase the feed back strength of the sensorimotor loop is subcritical and the robot will
stay in a resting position. The parameter dynamics, in this situation will increase the
feedback strength little by little so that after some time the robot starts moving its
limbs in a more or less spontaneous fashion. However, in the initialization one has
to avoid the “dark side” problem sketched in Sect. 5.1.4 (p. 81). In the experiments
described in this chapter we have explicitly taken care of that problem. More details
of how to get a convenient initialization may be found in our cooking recipe in
Sect. 15.2.

If the starting phase is chosen in that way it is advisable to add a little sensor
noise. Otherwise, if for instance the robot is lying on the ground it is forced by grav-
ity to total rest so that the sensor values are constant. In this situation the forward
model will very rapidly learn to produce the exact sensor values (motor values being
also constant) so that the time-loop error goes down to zero and learning stops alto-
gether. Once the feedback strength exceeds a certain critical value so that the robot
starts moving, the model will start producing a residual error in a natural way due

http://playfulmachines.com/videos.html#vid:highdim:challenge
http://playfulmachines.com/videos.html#vid:highdim:challenge
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to the extremely complicated dynamics in these high-dimensional physical systems.
Then, the noise may be switched off so that the state-parameter dynamics becomes
a purely deterministic dynamical system in several hundred dimensions.

Spontaneity
One of the interesting observations made in that setting is the seemingly random
nature of the motion patterns although the system is deterministic. This is explained
by the fact that the physical dynamics takes place in a low-dimensional subspace
of the extremely high-dimensional state-parameter space. In this way what we see
is not random, but spontaneous, namely the result of the hidden dynamics in the
residual dimensions.

Nevertheless, in particular in long-time experiments, it is often advisable to in-
ject some (very) weak noise into the sensors together with a weak damping of the
parameter dynamics1. This avoids running into “pathological” regions of the state-
parameter space. Speculatively, with several hundred dimensions, the dynamics of
the combined system is prone to running into “very strange” attractors (possibly
much different from what we know so far by dynamical systems theory). In experi-
ments with real robots, some kind of sensor noise and even actuator noise (that we
do not use in the simulations) is present in a natural way so that its use in simulations
is not unrealistic. But again, we emphasize that the intended self-actualization and
playful behavior is to be a result of the interaction between the deterministic inner
dynamics and the uncertainties of the external (to the brain) world. In the experi-
ments of this chapter, the uncertainties are essentially a result of the properties of
the body—a complex mechanical system getting fed energy into by the actuators.

10.1 Underactuated and Compliant

We have seen in Chap. 8 how the homeokinetic controller realizes what we call
body inspired control. We have seen there that the controller, quite by itself, devel-
ops a kind of feeling for the body and manages to induce whole body movements
by forces of minimal strength, getting into a kind of functional resonance with the
physical dynamics of the mechanical system. The SLINGING SNAKE in Sect. 8.3
(p. 168) gives a striking example of that scheme: the robot is very underactuated
and has a poor sensor information measuring nothing but the velocity of the head
over ground. Given the highly complex physical system of many degrees of free-
dom actuated solely by the head it is very surprising that the controller manages
to develop a highly regular whole body motion by slinging the passive parts of the
body.

We are now going to consider a certain parallel of that situation in systems with
more motors and sensors but with the same setting of heavy underactuation and poor

1 Of course, you are free to try strong noise, too, checking the robustness of homeokinetic learning
against external perturbations.
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sensor information. The latter is only obtained from the joint angles and this is of
course not enough to understand the physical situation of the robot. In such a setting,
what will the emerging motions look like? Will there be a relation to the body and
will the controller manage to excite collective motions of the system, i. e. whole
body motions in tight correlation with the sensor values?

Let us consider two experiments that demonstrate in a particular way how the
controller is being inspired by a highly compliant body.

DOG Fixed in the Air

In the first experiment we consider the DOG, a dog-like robot, which is like all robots
in this chapter, simulated in our LPZROBOTS environment. The DOG consists of
boxes and capsules connected by 12 actuated hinge joints, see Sect. 16.4.1. In this
first experiment we fix the trunk of the robot so that the legs may move freely. In
order that the “brain” may feel the embodiment we use the case of an underactuated
system where the torques are so weak that large angular values can only be reached
by getting the legs into a swinging motion, exploiting the inertia given by the mass of
the legs. Initialization is in the standard way described above. In the underactuated
system this means that the legs will hang down freely. The interesting point is that
after some time the legs start swinging in different modes and temporarily we even
observe an emerging coordination between the legs, see the Video 10.2 and/or do
Experiment 10.1.

Video 10.2: Swinging legs. The trunk
of the DOG is fixed so that the legs can
move freely. The motors are so weak
that the controller must learn to excite
a resonance mode. There are no phys-
ical cross couplings between the legs.
Nevertheless, there are some frequency
and phase correlations observable. The
video can be watched at http://
playfulmachines.com.

This means that the legs swing at about the same frequency, with phase relations
being constant over some time. We observe both in-phase and anti-phase correla-
tions in the leg motions much in the way necessary for different gaits. The coordi-
nation is only transient but that there is a coordination is seen best by its breakdown:
the swinging of the legs stops almost simultaneously, which can happen only if there
is a coordination between individual legs.

However, this is highly nontrivial since there is no direct information exchange,
neither physical nor between motor neurons, the only way of establishing correla-
tions being the emergence of cross channel couplings in the matrix C of the con-
troller. This is what is happening temporarily at least, corroborating our general

http://playfulmachines.com/videos.html#vid:HighDim:dog:air
http://playfulmachines.com/videos.html#vid:HighDim:dog:air
http://playfulmachines.com/videos.html#vid:HighDim:dog:air
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Experiment 10.1: Swinging legs. The heavily underactuated dog.
Start the simulation DOG with swinging legs where the robot is fixed in the air. You can drop the robot by pressing X.
Default values of the parameters are set such that you will observe after some time coordinated motion patterns. You
may wish to change the following parameters: forcefactor (this is a relative quantity multiplying the force of the
motors, default value is 1), gravity (default is -9.81), and the learning rates for controller and model (epsC,epsA)
(default is 0.1). Use the GUILOGGER and MATRIXVIZ for monitoring the parameters (x, y, C, h).

understanding of homeokinetic learning as a process of making each motor neuron
sensitive to the inputs by all sensors and this can be realized best if there is some
correlation between the sensor inputs.

At a more speculative level we may also argue that the coordinated swinging mo-
tion is emerging because our parameter dynamics preserves the symmetries of the
physical system so that, with a convenient initialization (and isotropic sensor noise,
if any at all), any motions can only arise from spontaneously breaking these sym-
metries. As we have seen in Sect. 5.3.5 (p. 96), oscillatory motions are very natural
in this context. Moreover, due to the explorative character of the full dynamics, the
system is not observed to establish and stabilize a specific mode. Instead all modes
are of a transient nature, so that we observe the playful realization of several such
collective modes.

The Suspended HUMANOID

The next example we are going to consider is the underactuated HUMANOID. Like
the DOG, our HUMANOID consists of boxes and capsules but has human-like pro-
portions, see Video 10.3. The motor power and sensor configuration is similar to the
DOG but we will not fix the trunk of the robot in the air. Instead, we consider the
case that the robot is suspended like a bungee jumper so that its legs are just able to
reach ground. This is realized in the simulator by an emulated spring producing an
upwards directed force linearly depending on the position of the trunk. The position
and strength of the spring can be defined conveniently, see Experiment 10.2.

There is nothing spectacular happening in this scenario, see Video 10.3. Different
from the DOG, however, there is now a physical coupling between all degrees of
freedom mediated on the one hand by the collisions with the ground and, on the
other hand, by inertia and gravitation that become effective if ever the robot or any
of its parts changes its position or inclination. How can we see that the controller is
“feeling” its body? Again, this is a controversial question that can not be answered
in an objective way. Of course, it would be very interesting to have a measure for
the whole body movements. Predictive information of the sensor values might be a
convenient solution, as could be concluded from the results obtained with a chain of
wheeled robots with decentralized control [40] but we do not have concrete results
yet. Other methods for using information theory as proposed for instance in [98, 135,
140, 155] could help here in order to quantify the emerging coordination between
the parts of the body.
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Video 10.3: Suspended HUMANOID.
The robot is pulled upwards by a sim-
ulated spring such that the robot can
freely move, but still interacts with
the ground. This is a kind of scaf-
folding situation in order to give the
brain time to accustom to the body.
The video can be watched at http:
//playfulmachines.com.

Experiment 10.2: Bungee jumping.
Start the simulation Bungee jumping. Default values of the parameters are set such that you will observe after some
time the robot taking all kinds of whole body motion patterns. You may wish to change the following parameters:
forcefactor (this is a relative quantity multiplying the force of the motors, default value is 1), gravity (default
is -9.81), learning rates for controller and model (epsC,epsA) (default is 0.1). The robot is lifted by a spring
force (bungee) that you can adjust with bungeestrength (relative quantity, default 1) and bungeeheight that
specifies the height of the spring origin in multiples of the body height. You may apply additional forces to the center
of the trunk by using <Ctrl>+<left mouse button>. Monitor the parameters (x, y, C, h).

Visual inspection can tell us a little about the nature of the motion patterns, in par-
ticular if changing the physical parameters like motor power, gravity, or the length
of the spring giving the robot more ground contact or less. It is readily seen that the
behavior changes and one may well see that the changes are by trend taking account
of the modified conditions.

These experiments reveal more interesting results in the course of time, so it is
worthwhile to have the simulations run for several hours since then the more typical
patterns are emerging. In these simulations it is also advisable, as discussed above, to
inject a little sensor noise and include a small damping into the controller parameter
dynamics. As already mentioned, you are invited to try strong noise, too, checking
the robustness of homeokinetic learning against external perturbations.

The freely moving robots offer a good opportunity to test the potentials of the
more complex brain architecture, using multilayer networks for both model and
controller, as implemented in the soml algorithm, see Sect. 15.3. The point is that
the multilayer architecture needs coherent learning signals over a longer period of
time. This is not so well guaranteed if the robot is subject to rapidly changing con-
ditions, as is the case already if the robot is in full ground contact without any
suspension. It is interesting to observe how the robot can be prepared to the latter
situation by having it suspended for a longer time, dropping it only afterwards. This
can be considered as a kind of scaffolding, giving the multilayer controller network
time to accustom to the specifics of the body mechanics in a less challenging setting.
Interesting experiments in that direction have for instance been reported in [90]. An
experiment is prepared in Experiment 10.3.

http://playfulmachines.com/videos.html#vid:highdim:humanoid:suspended
http://playfulmachines.com/videos.html#vid:highdim:humanoid:suspended
http://playfulmachines.com/videos.html#vid:highdim:humanoid:suspended
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Experiment 10.3: Multilayer networks for forward model and controller.
Start the simulation Multilayer networks: Bungee. Both controller and forward model are now networks are two layers.
You can change the number of hidden units with numcontrolunits and nummodelunits (default 17). The
changes will become effective after restarting the robot by pressing r in the graphical window. See Experiment 10.2
for further details. Use the MATRIXVIZ for monitoring the parameters (x, y, C1, C2, and h).

10.2 DOG and HIPPODOG

Let us now study two dog-like robots that differ in an essential construction element
of the body. The DOG is equipped with a large massless box fixed to its back (not
visible in the simulations), preventing it from falling over. The HIPPODOG on its
part has a spherical trunk so that it may roll over when falling down. Our interest is
in the difference in the motion patterns developed by these two different mechanical
structures under homeokinetic control.

In most of the experiments the gravity is reduced to about one half of the earth
gravity (−9.81) much in the sense of a scaffolding.

The DOG

Above, we considered the DOG in the air, but the main interest is of course the
behavior of the dog when on the ground. Nevertheless, in our experimental settings,
see Experiment 10.4, we often let the dog for some time fixed in the air so that the
“brain” can feel the motions of the unperturbed legs as in the experiments above,
much in the spirit of a scaffolding of the development process. After that we let the
dog fall to the ground. However, the normal settings is to start the dog directly on
the ground. In that case it is useful to initialize the controller matrix C and model
matrix A as scaled unit matrices so that (i) there are no cross correlations between the
channels (made up of the motor and the respective proprioceptive sensor), and (ii)
the feedback strength is already close to the critical point so that the amplification
of noise (actually the prediction error) is already substantial. In this way, initial
irritations resulting from the physics (falling down) are already sufficient to “get
things going.” If not, injection of a little sensor noise or a mechanical shake up (use
mouse buttons) will do.

In order to illustrate the emerging sensorimotor coordination we use an environ-
ment consisting of three concentric squares with barriers of increasing height. In a
typical run, see Experiment 10.4, after its initial phase of getting into activities the

Experiment 10.4: DOG surmounting barriers.
Start the simulation Dog Inside Barriers, which starts with the DOG fixed in air. You may drop it by pressing x.
The default setting of the arena is three barriers of heights 1/3, 1/2, and 1. You may change the distance and height
ratios by the relative parameters barriersheight and barriersdistance. You may change the parameters
as described in Experiment 10.1.
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DOG rather soon surmounts the innermost barrier and then lingers around for quite
some time. It may return into the inner barrier and/or will eventually face the next
barrier, which has a height of about half the dogs clearance. In the interplay with
this barrier, it eventually will surmount that barrier, see Video 10.4 for an example.

When caught on the barrier, a more cautious, probing behavior is emerging.
Video 10.5 shows that the DOG is keeping its body low most of the time so that
it has good contact with the barrier. Please note again that the only information the
robot has on its body and the contact with the obstacle is given by the sensors mea-
suring the joint angles. Contact with the barrier is felt only by the perturbations of
the sensorimotor correlations caused by the physical forces. The preference of the
forward direction in the motion is interpreted as a result of the anatomical asymme-
try.

Video 10.4: DOG “playing” with barrier. The DOG video demonstrates the playful man-
ner of exploring the world in the homeokinetic learning scenario. Note that the robot has
nothing but its joint angle sensors as source of information about its body and the envi-
ronment. The DOG is protected by an invisible box on its back preventing it from falling
over. The video can be watched at http://playfulmachines.com.

Video 10.5: Dog climbing over a barrier. When encountering a barrier, the DOG can
behave in many different ways since there is no goal prescribed. However, more often
than not, the robot manages to climb over the barrier in a seemingly goal oriented way.
In the video, the DOG has acquired a rather cautious behavior slowly probing different
possibilities of interacting with the barrier. After some time the left hind leg is swung
onto the barrier and after several minutes it climbs out completely. The video can be
watched at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:dog:playbarrier
http://playfulmachines.com/videos.html#vid:dog:playbarrier
http://playfulmachines.com/videos.html#vid:dog:climb1
http://playfulmachines.com/videos.html#vid:dog:climb1
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Experiments with the HIPPODOG

In another artifact, the HIPPODOG, we have modified the DOG by giving it a spher-
ical trunk, omitting the artificial stabilizing box. The spherical shape of the body
is sufficient that the robot, after falling over, manages to get back to its “work-
ing” stance from nearly any situation. Thus one may leave the robot to itself in the
same way as its “ancestor” that was protected by the invisible box. In the course of
time we observe similar behaviors as described with the DOG. However, due to its
higher mobility, the HIPPODOG has more the tendency to reach a very active, jumpy
regime. In particular, getting back to its feet is not realized, as a real dog might do,
by rolling over, keeping the legs stretched so that they are out of the way. Instead,
the robot gets back to its feet by heavily agitating its legs catapulting itself up by
ground contact with its feet, exploiting the high ground-foot friction.

Video 10.6: The HIPPODOG — The effect of the anatomy. The HIPPODOG with its
spherical trunk is developing more active and jumpy motion patterns due to its specific
anatomy. The video can be watched at http://playfulmachines.com.

Experiment 10.5: The HIPPODOG.
Start the simulation HIPPODOG . Choose arena and parameters as in Experiment 10.4.

In conclusion, let us emphasize again that the robot has no goal or aim to sur-
mount the barriers so that often it returns instead of moving further ahead. The point
we want to make is that the observed motion patterns may be described as activi-
ties in close dynamical contact with the objects like the barrier. This leads to an
increased probability for seemingly dedicated actions like jumping over the barrier
as in Video 10.4.

10.3 HUMANOID

Let us consider the HUMANOID again. We think that the HUMANOID lends itself
best to qualitative visual inspection because of its similarity to humans. As humans,
we are particularly trained to observe and “classify” other human beings by their
body language, an ability that is thought useful for our purpose of getting qualitative
understanding of the diversity of behaviors emerging under homeokinetic control.

http://playfulmachines.com/videos.html#vid:dog:hypodog
http://playfulmachines.com/videos.html#vid:dog:hypodog
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The emerging behaviors largely depend on the environmental conditions, as en-
countered for instance on level ground, in a cluttered environment, or if together
with other robots where often a wrestling-like behavior is emerging, see below.

Like in the previous experiments, the gravity is reduced to about one half of the
earth gravity (−9.81) in order to provide some scaffolding. In the experiments it is
interesting to change the gravity parameter, observing the capability of adapting to
new physical situations.

Starting from Scratch

Let us study first the initial development of the robot behavior in the case of the
HUMANOID.

We study here two situations, the first one, starting on level ground, gives the
robot more freedom although the motions are constrained due to the gravity pulling
the robot to the ground. In the second situation the HUMANOID is falling into a nar-
row pit. In the following experiments the motor forces are strong enough to partly
counteract the constraints. As usual, we have chosen the slightly subcritical initial-
ization of the controller without any cross channel correlations, see above. In the
first situation, see Video 10.7, the robot develops smooth and slow motions. Al-
ready during the first minutes an increase of the behavioral spectrum is observed.
Later on one often observes patterns that look like the intention to get up, repeating
several times. In Video 10.8 the behavior in the second situation is shown, where
many different behaviors emerge due to the much stronger constraints given by the
geometry of the pit.

Video 10.7: Initial development of the HUMANOID (I). Top: From scratch. Bot-
tom: 6 min later. If the robot is started initially on level ground, it develops rather smooth
and slow motions, increasing steadily its behavioral spectrum. The videos can be watched
at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:humanoid:InitialFloor:a
http://playfulmachines.com/videos.html#vid:humanoid:InitialFloor:b
http://playfulmachines.com/videos.html#vid:humanoid:InitialFloor
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Video 10.8: Initial development of the HUMANOID (II). If started in the pit, the robot
develops increasingly complex motion patterns related to that situation. Interestingly,
these patterns keep repeating in the course of time, getting more pronounced and lasting
over a longer time. The video can be watched at http://playfulmachines.com.

Video 10.9: Later developments. In the later development of the HUMANOID on level
ground we observe more active behaviors. Interestingly, one often observes patterns that
look like the intention to get up, these patterns often repeating several times. The bottom
video shows another motion pattern like they often emerge in the course of time. In the
experiment the gravity was chosen half the earth gravity in order that the robot can move
more freely. This is necessary in order to get enough feedback from the body. The videos
can be watched at http://playfulmachines.com.

High Bar and Rhönrad - Feeling the Body

The following two applications are to illustrate the emergence of what we call a feel-
ing for the body. The examples studied in Sect. 10.1 (p. 203) have already demon-
strated how in strongly underactuated and compliant systems the homeokinetic con-
troller manages to excite whole body modes despite the minimal control forces.
That setting was chosen so that the combined state-parameter dynamics has some
time to settle into coherent modes, i. e. that the entanglement described in Sect. 5.3
can become effective. Otherwise, the underactuated and suspended situation is not

Experiment 10.6: HUMANOID

Start the simulation HUMANOID. The robot is not connected to a spring so that it falls down freely. You can change
the arena with the parameters arenasize and arenaheight. Press r to restart the robot at the initial position.
You may wish to change the following parameters: forcefactor (overall factor for strength of motors, default
1), relforce (ratio between strength of arms to rest, default is 1), gravity and the learning rates for controller
and model (epsC,epsA) (default is 0.1). There are many more other parameters as seen in console output. In a
second simulation you can try the HUMANOIDin a rescue setup similar to (Video 10.8). Use the GUILOGGER and
MATRIXVIZ to monitor all parameters (x,y, C, h).

http://playfulmachines.com/videos.html#vid:humanoid:InitialPit
http://playfulmachines.com/videos.html#vid:humanoid:InitialPit
http://playfulmachines.com/videos.html#vid:humanoid:laterdevelop:a
http://playfulmachines.com/videos.html#vid:humanoid:laterdevelop:b
http://playfulmachines.com/videos.html#vid:humanoid:laterdevelop
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very realistic with respect to real robotics applications and, moreover, the situation
is largely unconstrained so that the emerging behavior patterns are very diversified.

Let us therefore consider two different situations where the physical constraints
are more dominant without restricting too much the independent development of
behaviors.

HUMANOID at the High Bar

The first setting we consider is the HUMANOID at the high bar. The hands are fixed
to the bar, but they can slide sideways. Clinging to the high bar, the HUMANOID is
forced into an upright position while still having much freedom to sway and swing.
The motor forces are again quite weak so that for instance the robot is not able to
chin the bar.

(a) (b)

Video 10.10: HUMANOID exercise at high bar. Underactuated robot under physical con-
straints: motor forces are quite weak so that for instance the robot is not able to chin the
bar. The observed motion patterns express the emerging cooperativity of body compo-
nents. The videos can be watched at http://playfulmachines.com.

Experiment 10.7: HUMANOID at high bar
Start the simulation High Bar where the humanoid is hanging on a fixed high bar. The robot can move along the
bar and of course swing axially. You may change the height of the bar with the parameter barheight. The other
parameters are the same as in Experiment 10.6.

As Video 10.10 shows, ambitious expectations are only partly met. On the one
hand we observe several motion patterns that look the way a very unathletic human
might behave. On the other hand, there is no swinging up observed as might be
possible by gaining enough momentum even in this weak force setting. The potential
reason is seen if the bar is chosen so high that the legs can not reach the ground.
What happens in this situation is that the robot most of the time is hanging in a
stretched posture without much trying to get into an oscillatory motion, as it would

http://playfulmachines.com/videos.html#vid:humanoid:reckdance:a
http://playfulmachines.com/videos.html#vid:humanoid:reckdance:b
http://playfulmachines.com/videos.html#vid:humanoid:reckdance
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be possible with the given motor forces2. Our preliminary explanation for that effect
leads us back to the one-dimensional sensorimotor loop analyzed in Chap. 6. There,
the system was shown to go into a hysteresis oscillation due to the entanglement with
the bias dynamics. Why does this not happen here? The explanation is found in the
strong torques exerted by the gravity on the joints. Strong external forces change the
hysteresis properties of the sensorimotor loop and thereby the entanglement between
state and parameter dynamics. Probably this effect is strong enough here to damp
away the oscillations altogether—the robot keeps staying in the elongated posture.

Does this knock out the claimed universality of our approach? One might argue
so, in particular since this phenomenon plays a role in many other situations as well
(see below), if the underactuation is substantial. However, there is a way out. The
point is that we are working here still with the forward model that relates sensor
and motor values simply by the matrix A. But this is completely wrong if there are
strong external forces. We expect that a convenient inclusion of these forces into the
model will improve the situation but we have no concrete results yet.

The RHOENRAD

The Rhönrad, a purely German item as it seems, is a large wheel of human size that
can be moved by shifting the center of gravity, see Fig. 10.1. Video 10.11 shows the
robotic counterpart RHOENRAD realized in our simulator, see Experiment 10.8.

Fig. 10.1: The Rhönrad in real-
ity. The wheel is maneuvered by
body movements shifting the center
of gravity. Image included with per-
mission by V. Hümpfner.

This construction was suggested by the BARREL in the first place since the latter
is also driven by an internal mechanism shifting its center of gravity. However, the
conditions for the controller are much more involved here. The BARREL disposed
of sensors measuring the inclination of the axes and there were only two degrees
of freedom for maneuvering the internal weights. The Rhönrad does not have any
sensors measuring the rotation angle of the wheel or any of its physical coordinates,
and shifting the center of gravity is done by an intrinsic mechanism involving now
the 15 degrees of freedom of the HUMANOID. Being underactuated (weak motor

2 Please remember that the only sensor information is from the joint angles so that the robot has
no information on its inclination, say. This makes the task of getting into a whole-body swinging
motion much more difficult.
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forces for the joints) the information on the position of the wheel can be obtained
by the different effects of the gravitation and possible inertia forces at the joints, but
this is of course an extremely intricate relation. Nevertheless, let us quite naively
connect our standard sox algorithm or the multilayer soml algorithm to the robot
and look what happens.

What can we expect? In the ideal case we expect to see a similar scenario like
with the BARREL or with the SPHERICAL in the spherical basin, that the complex
internal mechanism is guided by the controller in such a way that the most natural
modes, rolling in that case, are excited.

Our investigations are in a very preliminary state, Video 10.11 showing some
very first results. Of course what you see there is still far away from any stable
rolling mode, but the motions of the HUMANOID may be interpreted as getting in
some resonance with the motions of the wheel. This behavior is strongly depending
on the compliance of the HUMANOID that can be set in the experiments by changing
the motor-power factor. We also think that the RHOENRAD is a good opportunity to
test the multilayer soml algorithm of the homeokinetic controller since the whole
system is not prone to running into deadlocks by mechanical or environmental con-
straints. In this scaffolded situation it is possible to play with physical parameters
like the gravity, masses, and motor forces in a very free way.

(a) (b)

Video 10.11: HUMANOID in Rhönrad. The wheel can be moved by shifting the center
of gravity. The only sensor information is from the joint angles so that the robot does
not have any information on the physical coordinates and orientation of the wheel. The
videos can be watched at http://playfulmachines.com.

Experiment 10.8: RHOENRAD

Start the simulation RHOENRAD. Here the multilayer version (soml algorithm) of the controller is used. Choose the
parameters as in Experiment 10.6. Occasionally it is helpful to push the wheel (<Ctrl>+<mouse buttons>)

http://playfulmachines.com/videos.html#vid:humanoid:rhoenrad:a
http://playfulmachines.com/videos.html#vid:humanoid:rhoenrad:b
http://playfulmachines.com/videos.html#vid:humanoid:rhoenrad
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Fighting

The behavior in highly dynamic environments is one of the most challenging prob-
lems in robotics. The dynamics can be created by independent objects but it is even
more interesting to consider the interaction between different robots of the same or
different kind. The most interesting point in these scenarios is that the robots develop
a much higher variety of behavioral modes than in the case of a static environment.
We demonstrate this in particular by two humanoid robots in a narrow arena where
contact between the two is nearly unavoidable, see Videos 10.12 and 10.13. Partly,
we use also a weak force acting between the robots so that the probability to come
into contact is slightly increased.

Video 10.12: Fight, Fight, Fight. If robots come into close contact they may excite each
other to complex motion patterns. This is amazing since the only way of “feeling” each
other is by the perturbations in the sensorimotor dynamics caused by the physical forces
exerted in the interaction. Adherence is due to normal friction but essentially also by a
failure of the ODE physics engine, which after heavy collisions produces an unrealistic
interpenetration effect, which acts like a special gripping mechanism. So, the “fighting”
is a truly emerging phenomenon not expected before we observed it. The video can be
watched at http://playfulmachines.com.

Although without any aim of fighting each other the robots develop scenarios
like in a real wrestling. How does this fit into the general paradigm of homeokinetic
learning? We may, in a rather coarse argument, root this behavior back to the general
property of homeokinetic learning as a compromise between increasing sensitivity
while still trying to “keep things under control.” Loosely speaking, the sensitivity
increasing effect (see Sect. 5.3.2) makes the robot react to collisions caused by the
opponent, the reactions being moderated by the confinement effects as discussed in
Chap. 5. Additionally, due to a bug in the ODE physics engine, a heavy collision can
lead to an interpenetration acting like a gripping mechanism. In this way the robots
are directly influencing each other in a very intensive way. Under homeokinetic
learning the interaction between the robots is determined by being sensitive but
controlled, which may help understanding the behavioral variety. You can try it
yourself by doing Experiment 10.9.

http://playfulmachines.com/videos.html#vid:humanoid:fightcenterforce1
http://playfulmachines.com/videos.html#vid:humanoid:fightcenterforce1
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(a) (b)

Video 10.13: More Fighting. In the left video the robots come into contact by the nar-
rowness of the arena, in the second one there is a small force attracting the robots towards
the center. The videos can be watched at http://playfulmachines.com.

Experiment 10.9: Fighting
Start the simulation Fighting. There are two HUMANOIDs in the arena, which you can modify as in Experiment 10.6.
In case the robots penetrate the walls or get stuck otherwise, remember to press r to relocate them (the controller
remains unchanged). In order to increase the interaction of the robots there is a force that moves them to the center.
You can change its strength with centerforce (default 1). For other useful parameters see Experiment 10.6.

10.4 Snakes — Adaptation and Spontaneity

Snake-like artifacts have already been considered in [41]. However, those “snakes”
have been of a simple construction with only a hinge joint connecting the flat seg-
ments. The experiments described here use capsules as geometric primitives con-
nected by a universal joint realizing two degrees of freedom. Angles are constrained
so that a joint can not freely rotate. When in free space, the emerging motions de-
pend very much on the friction with the ground and the constraining effect of the
gravity. The snakes display a large variety of behaviors that are difficult to classify.
The reason is that the physical constraints on the motion are not so specific as for
instance in the DOG or HUMANOID case. Again, it is interesting and helpful for
the development of different behaviors to play with the physical parameters like the
gravity.

The situation is different however, if the snake is in a narrow vessel with diam-
eter of about two segment lengths so that the motions are heavily constrained, see
Video 10.14. Under this condition the snake displays typical modes repeatedly in
a loose succession. In the videos you find the coiling mode with the snake coiling
into the vessel while still rotating around its axis. In this way the snake can be active
while still being in good agreement with the physical constraints given by the vessel.
The most interesting effect however is in the fact that sometimes the snake manages
to (nearly) escape from the vessel in a rather spectacular way, see Video 10.15. The
experiment has been done without any noise so that the state-parameter dynamics is
deterministic and this sudden change to a completely new mode of behavior is to be
considered as purely spontaneous.

http://playfulmachines.com/videos.html#vid:humanoid:wrestling:a
http://playfulmachines.com/videos.html#vid:humanoid:wrestling:b
http://playfulmachines.com/videos.html#vid:humanoid:wrestling
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Video 10.14: The SNAKE adapting to
its environment. Under strong physical
constraints, the homeokinetic learning
finds a way to keeping the robot active
while taking account of the geometry of
the vessel. The video can be watched at
http://playfulmachines.com.

Video 10.15: How the SNAKE may manage to get out of the pit. The first picture in the
sequence shows the snake in a seemingly relaxed situation. However, as the video shows
there are tensions building up in the body and after some time it suddenly crunches into a
tight bundle of which it unrolls with very high velocity. By the inertia effects it manages
to nearly jump out of this very deep pit despite the quite weak motor forces. The video
can be watched at http://playfulmachines.com.

(a) (b)

Video 10.16: Emergence and decay of collective modes. The video sequence demon-
strates nicely the transient nature of the emerging modes. In the first part of the behavioral
sequence (a) the SNAKE goes into a collective mode with the segments rotating in a co-
herent manner generating a kind of strangling effect by the interaction with the glassy
cylinder. This mode, after prevailing for several minutes, is seen in (b) to break down
rapidly giving way to the emergence of new motion patterns. The videos can be watched
at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:snake:coiling
http://playfulmachines.com/videos.html#vid:snake:coiling
http://playfulmachines.com/videos.html#vid:snake:escape
http://playfulmachines.com/videos.html#vid:snake:escape
http://playfulmachines.com/videos.html#vid:snake:strangling:a
http://playfulmachines.com/videos.html#vid:snake:strangling:b
http://playfulmachines.com/videos.html#vid:snake:strangling
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The experiments with the SNAKE are also well suited for demonstrating another
feature of homeokinetic control related to the contingency of all behavioral patterns.
The homeokinetic objective (minimization of the time-loop error) does not make
any specific prescriptions on the kind of behaviors to emerge. Nevertheless, we have
seen that there are clear preferences corresponding to vast plateaus or valleys in the
error landscape, which act as attractors for the state dynamics, see Chap. 5. However,
we have seen also that the state dynamics is always entangled with the parameter
dynamics. This entanglement effect is kind of macerating these attractors so that
fixed motion patterns are converted into transients. A simple example of that kind is
the frequency drift described in Sect. 7.2.2 (p. 134). In the high-dimensional systems
the transient nature of emerging behaviors is quite prominent. The interesting point
is the long-lived nature of the transients. We give one clear example in Video 10.16,
being part of an experiment where the “strangling” mode was excited and existed
for several minutes, decaying rapidly afterwards.

Experiment 10.10: SNAKE

Start the simulation Snakes. Initially there is one SNAKE, falling into a circular pit. You can change the height of the
pit with pitheight. By pressing i/I you can add/remove a snake inside the pit and with s/S add into/remove from
the surrounding. You may wish to change the following parameters: motorpower, noise.

10.5 Self-Rescue Scenario

The results obtained so far suggest a potential practical application. In the scenarios
of this chapter we could observe that the robotic objects manage to get free from
very intricate situations. The first clear indication of that property was the surprising
ability of the BARREL to get into new modes of behavior like the precession mode
emerging after being put upright, see Sect. 8.5 (p. 178). Many other experiments
have revealed similar properties.

We therefore suggest to use our homeokinetic controller as a kind of rescue sys-
tem if a robot, driven by a conventional controller, has maneuvered itself into a situa-
tion it can not cope with. The idea is to switch in such a situation to our homeokinetic
controller, which will spontaneously generate new movements that are contingent
but in correspondence with the specific properties of the body and its interaction
with the environment.

Consider for instance the scenario where a robot was fallen into some pit or
ditch. We have presented in Video 10.8 above already a scenario of the robot in the
pit in its initial phase. Video 10.17 presents another situation somewhat later in the
development. As demonstrated by the video, the robot repeatedly shows climbing
patterns, so that it is nearly escaping from the deep pit. Another example is the snake
in the vessel, see Video 10.15.
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Video 10.17: Self-rescue scenario with the HUMANOID. After falling into a nar-
row pit, the robot develops several alternative motion patterns adapted to the new sit-
uation. After some time one often observes the emergence of climbing like behavior
patterns. The patterns are emerging without any goals as a consequence of the sensi-
tive but active interplay between the robot and the specific environment. Nevertheless,
they may help the robot to get out of this impasse. The videos can be watched at
http://playfulmachines.com.

10.6 World of Playful Machines

As already seen in the robot wrestling scenarios, the interaction with other robots is
a productive element for the individual development. In a multi-agent arena we ob-
serve that each of the agents develops a kind of behavior of its own, which is emerg-
ing from the interplay of its body with the environment, see Video 10.18 and/or
do Experiment 10.11. Behaviors are largely modified by the interactions with the
obstacles in the arena but mainly with other agents. The latter kind of interactions
makes this setting a highly dynamic environment.

Video 10.18: The world of playful machines. The video is an example of a robotic
world, all robots being driven by homeokinetic learning. Such simulations can run over
many hours, producing an unforeseeable sequence of motion patterns, even in the purely
deterministic case. In this video, the most interesting agent is the ARMBAND that seem-
ingly tries to get into a rolling mode. After heavy collisions it falls over, but in the later
development it gets upright again by another collision. After that it starts rolling and jump-
ing again. The video can be watched at http://playfulmachines.com.

http://playfulmachines.com/videos.html#vid:humanoid:selfrescue:a
http://playfulmachines.com/videos.html#vid:humanoid:selfrescue:b
http://playfulmachines.com/videos.html#vid:humanoid:selfrescue
http://playfulmachines.com/videos.html#vid:zoo:warwheelie
http://playfulmachines.com/videos.html#vid:zoo:warwheelie
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Experiment 10.11: The world of playful machines
Start the Play World simulation. There are no robots at the beginning, but you can add them yourself. You may
change the arena as in Experiment 10.6. Choose the controller type by: >multilayer=0 for sox algorithm and
>multilayer=1 for soml algorithm. Then you can add the robots by pressing: b for SPHERICAL, s for SNAKE,
u for HUMANOID, a for SLIDER ARMBAND, d for DOG, x for HEXAPOD, and l for LONGVEHICLE. Pressing
<Shift>+X (where X is one of the above keys) a robot of the respective type will be removed. The other useful param-
eters are: noise (default is zero!), damping, learning rates epsC,epsA and so on, see the numerous parameters
displayed on the command line.

In continual interaction, the robots with homeokinetic learning develop more
complex motion patterns. In the simulations one can run the system for hours and
days without running into dead locks. In principle, the system can run fully de-
terministic so that the whole scope of complex patterns and their development is
defined by the initial conditions of the physical system and the initialization of the
controller and forward model. In the simulations it is however sometimes neces-
sary to inject a little sensor noise combined with a weak damping of the parameter
dynamics in order to get rid of the determinacy by the initial conditions.

The multi-robot scenario is also an ideal possibility to test the multilayer soml
algorithm that comes with the LPZROBOTS simulator. In preliminary single-robot
experiments using the soml algorithm we observed a kind of channeling towards a
behavior spectrum of restricted complexity. This could be avoided by the collisions
with other robots, which, so to say, provide novel input from the body of the robot.
We hope that in this way the playful unfolding of motion patterns, although still
diversified, transient, and contingent by nature, is directed towards more pronounced
and more stable behavioral primitives.

10.7 Discussion

Let us start the discussion with noting the differences in dimensionality between
low- and high-dimensional systems. While for instance in the BARREL we have 8
degrees of freedom3 (DoF) and 6 parameters of the controller (4 matrix elements
of C and 2 of the bias term h), the SPHERICAL disposes of 9 + 11 so that the di-
mension of the state-parameter space jumps from 14 to 20. However, in the case of
the SNAKE there are, beside the physical degrees of freedom, m×n parameters for
the controller matrix C. With 10 joints with two motors and two sensors each, there
are already 400 parameters (plus the bias terms) of the controller running freely on
a time scale comparable to that of the physical system. Additionally, there are the
n×m matrix elements of the A matrix. When using the multilayer network (soml
algorithm) with just two layers, the number of parameters easily exceeds 1000.

However, despite the jump in dimensionality, there is no principal difference be-
tween the high- and the low-dimensional systems. So, we should also be able to
relate the observed motion patterns back to the embodiment of the agents. At first
sight this seems very difficult if not impossible. There are exceptions, though, seen

3 The BARREL is a rigid body with 6 DoFs (3 translational + 3 rotational) plus the two positions
of the internal masses.
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by the emergence of collective modes where all DoF are cooperating. Particular
examples of that kind are given by the SNAKE under certain environmental con-
ditions, such as being in the vessel where the so-called coiling mode develops—a
whole-body motion involving all DoF in a highly coordinated way. The emergence
of the mode largely depends on the specific environmental situation, which can be
considered as a kind of physical scaffolding.

At first sight, a collective mode like in the SNAKE seems rather an exception than
the rule. We have made also the experience that many roboticists assess the emerg-
ing motion patterns as random. Our attitude is different for several reasons. Firstly,
the assessment of the emerging patterns may seem obscured by the goal-focused
view in robotics, concentrating on special properties or skills like reaching, grasp-
ing, walking, jumping, or swimming. Instead, homeokinesis, while not caring about
particular needs, may help us to a fresh view on robotics. Namely letting robots
unfold their potential behaviors in a playful way and generating motion patterns
reminding of young children playing, acrobatics, or modern dancing to give a few
examples.

A second argument is seen in the fact that the development of the behaviors is
completely deterministic (switching off any sensor noise). The assessment of pat-
terns as being random usually is motivated by the assumption that similar behavior
patterns can be achieved by just using random actions. Even if this might work in
specific cases, there is a fundamental difference to the homeokinetic behaviors, the
latter being controlled in a deterministic way by a low-complexity controller. This
has far reaching consequences. For instance, if ever the robot comes back to a be-
havioral situation encountered before, its behavior can be repeated in a deterministic
way4. This is a good starting point for behavior based architectures, one of the future
research objectives.

A third point is made by the observations of many different high-dimensional
systems that all show quite a restriction to a rather small subset of the full behavioral
variety, in particular if the systems are under physical scaffolding (suspended HU-
MANOID, SNAKE in the vessel, and many further examples treated above) where the
system can run for a very long time without getting itself into situations where any
DoF is being blocked in a severe way. In these systems, one often has the impression
that the combined dynamics has settled into a very low-dimensional attractor living
in the phase space of several hundred dimensions. Involuntarily, sometimes in the
experiments one gets an impression of the full complexity by the parameter runaway
effect generating behaviors that are much more complex (seemingly random) than
the ones in the “sound,” homeokinetically controlled regions of the behavior space.

We are convinced by this and many other observations, that in the considered
high-dimensional systems there is a self-induced dimension reduction similar to
the one known from natural systems; and that the emerging patterns, although they
are many and varied, are in a definite way related to the physical properties of the
system. It would of course be very interesting to make this statement quantitative,
but we have no results yet.

4 This would require to have stored controllers in a long term memory tagged with a context stamp.
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Facing the Unknown — Homeokinesis in a New
Representation∗

Abstract: Homeokinesis has been introduced and analyzed in the preceding chapters on
the basis of the time-loop error (TLE). This chapter presents an alternative approach to the
general homeokinetic objective by introducing a new representation of the sensorimotor
dynamics. This new representation corrects the state dynamics for the predictable changes
in the sensor values so that the transformed state is constant except for the interactions
with the unknown part of the dynamics. The single-step interaction term will be seen to be
identical to the TLE so that the learning dynamics is not altered. However, besides giving an
additional motivation for the TLE, this chapter will extend the considerations to the case of
several time steps and will eventually consider infinite time horizons making contact with
the global Lyapunov exponents and chaos theory.

Coordinate transformations, in particular changing to a co-moving coordinate
system, are helpful tools in physics and engineering in order to keep considerations
as simple as possible and to concentrate on the essential features of a process1. Na-
ture has also developed many strategies of that kind. When you are moving your
eye while reading these lines, the images are moving on the retina. Nevertheless
you are not under the impression that the world is moving. Instead, one observes a
constancy of the space representation, which can only be achieved by the remapping
in the brain on the basis of the motor signals sent to the eye. Quite generally, space
constancy for a moving subject is one of the most important ingredients for feasible
information processing. It is realized through the remapping of visual information
in a cortical network situated between the occipito-parietal and frontal cortex [137].
This system necessitates the integration of multiple sensor and motor modalities in
different frames of reference such as the object, head, and body centered reference
frames based on the current motor behaviors [178].

Correcting for changes in perception that are caused by actions of the agent itself
gives the information processing a stable background. Concentration on the essen-
tials is a decisive evolutionary advantage since a moving object, be it predator or
prey, can be perceived without perturbations caused by the motions of the agent it-

1 A simple example is given by children playing ball on a train. Trajectories of the ball look quite
different for the outside and the inside observer. As compared to the world-centered coordinate
system, trajectories look much easier in the coordinate system moving with the train.

223



P
e
rs

o
n
a
l 
C
o
p
y224 11 Facing the Unknown — Homeokinesis in a New Representation∗

self. In this chapter we will study temporal remapping that will be seen to result in
a new, co-moving frame of reference, which focuses the perception on the unknown
challenging a productive interplay with the uncertainties of the real world.

11.1 Interaction Representation of Sensorimotor Dynamics

Remapping in time aims at transforming the state vector xt in such a way that, in
the new representation, the state dynamics is invariant under the systematic part of
the original dynamics. We are starting in this section with the transformation over a
single time step since this will be sufficient for most of our applications, the more
general definition will be given in Sect. 11.2.

Let us consider our time series of sensor values xt ∈ Rn, t = 0,1, . . . produced
by the behaving robot. Let us assume as before that we have established a map ψ
acting as a time series predictor so that

xt+1 = ψ (xt)+ξt+1 (11.1)

where ξ is the prediction error.
Let us now try to find a new state dynamics which is invariant under the pre-

dictable behavior of the robot, i.e. if the trajectory (in state space) is reducible to
the effect of ψ alone. The new representation we want to introduce aims at a state
constancy with respect to a fixed reference time t. Let us denote the states in the new
representation by x̃, put x̃t = xt and define the next state x̃t+1 as

x̃t+1 = ψ−1 (xt+1) (11.2)

stipulating for the moment that the inverse ψ−1 of the map ψ , defined by

ψ−1 (ψ (x)) = x , (11.3)

exists for all states x in the domain of ψ . Note that both state variables x and x̃ in
Eq. (11.2) are at the same time step indeed. Obviously, the definition Eq. (11.2)

ψ−1(x)

ξt+1

ψ(x)

x̃t+1

xt

ξ̃t+1

Fig. 11.1: Interaction representation
— one time step. Starting from xt , the
dynamics goes one step ahead through
the dynamics of the robot in its environ-
ment as described by the map ψ plus
perturbations given by ξ . The new state
is then projected back by means of the
inverse of the dynamical map ψ . The
result is the new state in the interaction
representation, its difference to the pre-
vious state is the interaction term.
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yields the desired result that x̃t = x̃t+1 if ξ = 0, i. e. that the dynamics is given by ψ
alone.

The definition is worked out further in Sect. 11.B (p. 233) but we will introduce
here a more handy representation. By using Eq. (11.1) in Eq. (11.2) we obtain by
means of a Taylor expansion2

x̃t+1 = xt +
1

L(xt)
ξt+1 +O

(
‖ξ‖2

)
(11.4)

where

L(x) =
∂ψ (x)

∂x
(11.5)

is the Jacobian matrix of ψ , see Sect. 5.6 (p. 78). We use the notation 1
L for the

inverse matrix L−1 as before. In case L is not invertable a pseudoinverse is to be
used, see Sect. 5.G. Actually this expansion is helpful only if the noise ξ is very
small. However, we can use an effective state in the Jacobian matrix to make the
higher order terms in Eq. (11.4) disappear, see Sect. 5.B (p. 100). Hence, using
x̃t = xt (t is the reference time) we may write the dynamical law for the transition
x̃t → x̃t+1 as

x̃t+1 = x̃t + ξ̃t+1 (11.6)

where we define (omitting the subtleties with the effective state)

ξ̃t+1 =
1

L(xt)
ξt+1 (11.7)

as the interaction term that plays the role of the noise in the new representation.
What is the relation of the interaction representation to the original representation

of the time series? Comparing Eq. (11.7) with Eq. (5.8), we find that the interaction
term ξ̃t+1 featuring in the new representation is identical to the time-loop (recon-
struction) error vt , i. e. (using x̃t = xt by definition)

x̃t+1− x̃t = vt . (11.8)

Moreover, once in the interaction representation, the prediction x̃pred
t+1 of the next

state x̃t+1 is just given by
x̃pred

t+1 = x̃t

2 The derivative of the inverse function ψ−1 : Rn → Rn is obtained by taking the derivative of
x = ψ−1 (ψ (x)) on both sides. Using the chain rule we find

I=
∂
∂u

ψ−1 (u)
∣∣∣∣
u=ψ(x)

∂
∂x

ψ (x) so that
∂

∂u
ψ−1 (u)

∣∣∣∣
u=ψ(x)

=

(
∂
∂x

ψ (x)
)−1

= (L(x))−1 .

By means of that we obtain the Taylor expansion in terms of ξ as

ψ−1 (ψ (x)+ξ ) = x+
∂
∂u

ψ−1 (u)
∣∣∣∣
u=ψ(x)

ξ +O
(
‖ξ‖2

)
= x+L−1 (x)ξ +O

(
‖ξ‖2

)
.
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since ξ̃t+1 represents the irreducible effect of the perturbations on the dynamics of
the system. In view of Eq. (11.8) we may also say that the prediction error in the
interaction representation is identical to the reconstruction error (time-loop
error) in in the original dynamics.

The intriguing picture of the new representation is the stationarity of the state in
the transition x̃t → x̃t+1 if the model ψ describes the transition xt → xt+1 exactly
(ξ = 0). A dynamics comes in only if there is a discrepancy between the internal
representation ψ and the true dynamics of the brain-body system (ξ 6= 0). Metaphor-
ically speaking, the new dynamics focuses on the interaction between the internal
representation and the true dynamics by taking away the knowable influences of the
agent’s own actions on the development of its sensor values. This is why we call
Eq. (11.6) the interaction representation of the sensorimotor dynamics. We will give
further details and justifications in the following.

11.2 Extending the Time Horizon

The interaction representation was introduced above for a single time step. This is
sufficient for many applications, in particular if the correlations across time are not
too important. From our experience with the time-loop error (TLE), it is obvious that
the single time-step approach is creating already many highly sophisticated motion
patterns in a variety of brain-body systems. The interaction representation of course
can be defined over many time steps and this is what we are going to consider now.
We will start with some preliminaries, defining orbits forward and backward in time
in a deterministic dynamical system, applying this subsequently to the definition of
the interaction representation of a time series. We think that this is an interesting
new representation that might be of interest for time series analysis and prediction
in general so that we will keep our considerations at a general level.

As the next step, we will apply the interaction representation to the problem of
self-learning robot control by giving the general learning rule based on minimizing
the interaction term (now over arbitrarily many time steps). Eventually, we are going
to extend the time horizon to infinity in order to make contact with classical chaos
theory. In this way we will recognize general homeokinetic learning as a flow of
Lyapunov exponents of the model dynamics given by ψ .

11.2.1 Preliminaries: Orbits in Dynamical Systems

Let us consider now a deterministic, time discrete dynamical system defined by
iterating a map ψ : Rn→ Rn, producing a time series xt , t = 0,1, . . ., as

xt+1 = ψ (xt) . (11.9)
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This is quite general but we may consider it as the systematic part of the time evolu-
tion of the sensorimotor loop. We can describe trajectories or forward orbits of our
system by introducing the maps ψk : Rn→ Rn defined iteratively by

ψk (x) = ψ
(

ψk−1 (x)
)
= ψ (ψ (. . .ψ (x)))

together with ψ1 (x) = ψ (x) and ψ0 (x) = x. In particular, starting from some state
x0 given at time t = 0, the state at time t is xt = ψ t (x0). In the same way we can also
define trajectories backward in time assuming for the moment that the function ψ is
invertible, i.e. that there exists a map ψ−1 : Rn→ Rn so that ∀x in the domain of ψ

ψ−1 (ψ (x)) = x .

Analogously to the forward orbit we define the k-fold iterate of ψ−1 iteratively by

ψ−k (x) = ψ−1
(

ψ−k+1 (x)
)

(11.10)

so that we can define the backward orbit over k steps. As to notation we use the
index k as the number of steps relative to some reference time, mostly t. In order to
simplify notation we will assume t = 0 during the derivations and reintroduce the
current value of t afterwards. Hence

x0 = ψ−k (xk) (11.11)

means the reconstruction of the present state from some state k steps later in the
future. Of course, we can use this also in order to reconstruct states from the past
based on the present one but we use this setting of the times since this is useful for
the further developments. It is instructive to consider the linear case where ψ (x) =
Lx (with a constant matrix L), so that ψ−k (x) = L−kx where L−1 is the inverse of
the matrix L and L−k =

(
L−1
)k.

We can now follow, in a deterministic system, the propagation of a perturbation
ξ ∈ Rn backward in time, i. e. consider in leading order 3 of the perturbation ξ

δx0 = ψ−k (xk +ξ )−ψ−k (xk) = ψ−k
xk

ξ (11.12)

where

ψ−k
xk

=
∂ψ−k (u)

∂u

∣∣∣∣
u=xk

.

In Sect. 11.A we derive that in the same sense

3 In order to keep derivations simple we assume here and in the following that the noise is infinites-
imally small so that the higher order terms vanish. The leading order terms are then used in the
sense of a definition for the general case or they may alternatively be improved by using effective
states.



P
e
rs

o
n
a
l 
C
o
p
y228 11 Facing the Unknown — Homeokinesis in a New Representation∗

δx0 = ψ−k
xk

ξ =
1

L(x0)

1
L(x1)

. . .
1

L(xk−1)
ξ (11.13)

where k = 0,1, . . . and 1/L denotes the matrix inverse L−1, as always. The propa-
gated perturbation δx0 can, in leading order of ξ , also be obtained by iterating the
auxiliary quantities δxk as

δxk−1 =
1

L(xk−1)
δxk (11.14)

which has to be iterated starting with δxk = ξ . This rule describes the step by step
propagation of an infinitesimal perturbation ξ backward in time down to δx0 by
means of the deterministic dynamics.

11.2.2 Interaction Representation of a Time Series

Now let us return to the time series of sensor values xt ∈ Rn, t = 0,1, . . . produced
for instance by a behaving robot. Let us assume as before that we have established
a map ψ acting as a time series predictor so that

xt+1 = ψ (xt)+ξt+1 (11.15)

where ξ is the prediction error. This extends the deterministic dynamical system
given by Eq. (11.9) to the case of a more realistic time series with unpredictable (at
the level of the dynamics model ψ) perturbations.

Our aim now is the derivation of a transformed state dynamics which is invariant
under the predictable behavior of the robot, i.e. if the trajectory (in state space)
is reducible to the effect of ψ alone (ξ = 0). The new representation we want to
introduce aims at a state constancy with respect to a fixed reference time t, putting
t = 0 again for the derivation. We define a new state x̃k by projecting later states xk
over k steps backwards in time back to the reference time, i. e.

x̃k = ψ−k (xk) . (11.16)

The reason for choosing this new representation of the state is seen if we follow the
development of the state x̃k for k ≥ 0 into the future. As shown in the Appendix,
Sect. 11.B, Eq. (11.41), the dynamics of the transformed state x̃k is given by the
iterative rule

x̃k+1 = x̃k + ξ̃k+1, k ≥ 0 (11.17)

with initial condition x̃0 = x0. The interaction term ξ̃k+1 is, in leading order of the
noise, obtained explicitly with k = 0,1, . . . as

ξ̃k+1 =
1

L(x0)

1
L(x1)

1
L(x2)

. . .
1

L(xk)
ξk+1 . (11.18)
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The new dynamics, represented by Eq. (11.17), deserves some discussion. The
essential point is that the new state is constant in time indeed, i. e. x̃k = x0 ∀k ≥ 0,
if the model is exact i. e. ξ = 0. Moreover, the transformed noise is directly given
in terms of the prediction error and the inverse of the Jacobian matrix4. We may
consider the deterministic part of the dynamics as the behavioral component that is
under complete control by the robot itself whereas the interaction term represents
the interaction with the uncertainties of its body dynamics and the world. The trans-
formed dynamics focuses completely on this interaction and this is why we want to
call it the interaction representation of the sensorimotor dynamics5.

In the linear case where ψ (x) = Lx we simply have ξ̃k+1 = L−(k+1)ξk+1 and in
the one step case, i. e. with k = 0 in Eq. (11.17), the interaction term is (setting the
physical time back to t)

ξ̃t+1 =
1

L(xt)
ξt+1 (11.19)

which is just the one step TLE v introduced in Eq. (11.8) above. The identification
with the interaction representation may be seen as both a deeper foundation and a
systematic basis for extending homeokinetic learning to a larger time horizon. Inter-
estingly and most importantly for our approach, the interaction term in Eq. (11.18)
can directly be related to the global Lyapunov exponents (for k→ ∞) of the de-
terministic dynamical system generated by ψ . This point will be further discussed
in Sect. 11.3.

11.2.3 Relation to the Time-Loop Error

The interaction term in the interaction representation can be understood in various
ways. A first point of interest is its relation to state reconstruction and the multiple-
step time-loop error (TLE). Actually, the state in interaction representation is ob-
tained by backward projecting a future state xt+k to an earlier time, the reference
time t, see Eq. (11.16), by means of the current knowledge on the process repre-
sented by the dynamical map ψ . In other words, the latter is used in order to recon-
struct the state xt from xt+k, the state observed at time t+k. The difference x̃t+k−xt
(or its square) may be called the reconstruction error from time t + k back to time t,

4 Please note that ξ̃ depends explicitly on the reference time, but we omit this in our notation for
the sake of simplicity whenever this does not lead to ambiguities.
5 The notion is borrowed from quantum mechanics where the original Schrödinger equation with
Hamiltonian H

i
∂
∂ t

Ψ = HΨ

is transformed by splitting H = H0 +Hint into the dynamics

i
∂
∂ t

Ψint = Hint (t)Ψint

where Hint (t) = eitH0 Hint e−itH0 .
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i. e. we define
E = ‖x̃k− x0‖2 =

∥∥∥ψ−k (xk)− x0

∥∥∥2
(11.20)

(putting t = 0 again).
The reconstruction error can be related to the interaction term in the interaction

representation by iterating Eq. (11.17) backward in time (replacing iteratively x̃k
with x̃k−1 + ξ̃k and using x̃0 = x0) to obtain

x̃k− x0 =
k−1

∑
l=0

ξ̃l+1 (11.21)

so that the k-step reconstruction error E(k) is given by the sum of the interaction
terms collected between times t (k = 0) and t + k as

E(k) =

∥∥∥∥∥k−1

∑
l=0

ξ̃l+1

∥∥∥∥∥
2

. (11.22)

11.2.4 General Multiple-Step Learning Rule

The minimization of the TLE E from Eq. (11.22) can be realized by gradient descent
so that we obtain a dynamics for any controller parameter p. Together with the sys-
tem dynamics we obtain the following set of equations defining the self-referential
robotic system (returning to the full time notation)

x̃t+l+1 = x̃t+l + ξ̃t+l+1 (11.23)

∆ pt =−ε ∑
l

ξ̃>t+l+1
∂

∂ pt
ξ̃t+l+1 (11.24)

where p ∈ RP is the set of the parameters (namely all Ci j and hi in our standard
setting).

In practice one uses a fixed time horizon k for the interaction dynamics. When
at time t we use it as reference time, wait for the next states xt+l for l = 1,2, . . . ,k
to come in and find the interaction terms ξ̃t+l+1 for each l by means of Eq. (11.18).
Then, the parameters are updated according to Eq. (11.24). Subsequently t is in-
creased by 1 and the procedure of finding the interaction terms is restarted.

11.3 Homeokinesis as a Flow of Lyapunov Exponents

Let us try now to formalize our results a little further by relating the homeokinetic
learning rules to the global Lyapunov exponents of the model dynamics given by
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the map ψ . The considerations are kept a little sketchy in order not to burden the
reader with too much technical details.

Our aim is first to relate the interaction term in the interaction representation to
the separation vector between neighboring trajectories. The latter forms the basis
for the global Lyapunov exponents of the dynamical system given by ψ . In fact, the
usual (forward in time) definition of the Lyapunov exponent with k iterations rests
on the separation vector for the propagation of an infinitesimal perturbation ξ0 of
the starting state x0 into the future. In terms of the k-step Jacobian matrix

L(k) (x0) =
∂ψk (x0)

∂x0
= L(xk−1) . . .L(x0) , (11.25)

the maximal Lyapunov exponent for the perturbation vector ξ is given by

λmax (ξ ) = lim
k→∞

1
k

ln
∥∥∥L(k)ξ

∥∥∥ . (11.26)

There is a subtlety in that the maximal Lyapunov exponent depends on the vector
ξ . We can circumvented this subtlety by recalling that in the general case the vector
ξ is essentially noise, meaning that it will not be restricted (with probability one) to
some subspace of the full phase space so that λmax (ξ ) is just the maximal Lyapunov
exponent λmax of the full Lyapunov spectrum. So, let us assume that is the case for
our system, the extension to the general case being straightforward.

Now, let us consider a trajectory starting at x0, generated by iterating k times the
deterministic state dynamics, to generate the state x̂k = ψk (x0). Then, we retrace the
dynamics back to k = 0 in two cases, one starting with x̂k, the other one with x̂k +ξk.
The length of the separation vector δx0 between these two trajectories is given for k
steps in terms of

ξ̃k+1 =
∂ψ−k (xk)

∂xk
ξk = L−1 (x0)L−1 (x1) . . .L−1 (xk−1)ξk =

(
L(k) (x0)

)−1
ξk

(11.27)
Before taking the limit let us compare this to the separation vector forward in time.
The difference between Eq. (11.25) and Eq. (11.27) is seen in the inversion of the
Jacobian matrix L(k), taken at the starting state x0. In a singular value decomposition
of L(k) this means that the singular values are inverted so that in the limiting process
we obtain instead of (11.26)

λmin = lim
k→∞

1
k

ln
∥∥∥∥∂ψ−k (xk)

∂xk
ξ
∥∥∥∥= lim

k→∞

1
k

ln
∥∥∥ξ̃k+1

∥∥∥ , (11.28)

λmin being the minimal Lyapunov exponent of the full Lyapunov spectrum with
starting state x0 (and not xk).

Taking the logarithm of the interaction strength as objective for the gradient de-
scent, we obtain the learning rule for the parameters p of the system as
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∆ p = ε
∂λmin

∂ p
. (11.29)

(We use finite k, suppressing the dependence on k since we tacitly assume that k→∞

eventually, where this dependence disappears.)
The message is that it is the lowest Lyapunov exponent of the full spectrum that

is driving the change in the parameters, which for their part change the spectrum of
the Lyapunov exponents. With the lowest Lyapunov exponent driving the process, it
is expected that the learning dynamics generates a flow of the Lyapunov exponents
so that the system is destabilized in all dimensions, i. e. it is driven more and more
towards a chaotic regime. Just as in the case of the one-step time-loop error, there are
confining mechanisms, for instance by the nonlinearities and the effects described
in Sect. 5.3 (p. 89). In particular, being driven by ψ , the destabilization mechanism
will loose its “grip” on the real system if the latter is driven too much towards chaos
since ψ will not be able to represent the system in that regime. Another confining
component is the temperature effect, see Sect. 5.3.4 (p. 95), since the chaotic regions
in the error landscape will be of higher temperature than the more regular ones.

The solution of the conflict between sensitizing and confining tendencies is ex-
pected to produce a rich but controlled behavior of the robot just as with the one-step
TLE. The advantage of the multi-step case is the explicit involvement of correlations
over several time steps but the ascertainment of these expectations must be left to
future research.

Appendix 11.A Proof of Eq. (11.13)

Applying, for any state u, the chain rule to

ψ−l (u) = ψ
(

ψ−(l+1) (u)
)

yields the iterative rule

ψ−(l+1)
u =

1
L
(
ψ−(l+1) (u)

)ψ−l
u .

With u = xk we may write

ψ−(l+1)
xk =

1
L
(
xk−(l+1)

)ψ−l
xk

(11.30)

so that by iteration, starting with l = 0 and using ψ−0
u = I

ψ−k
xk

=
1

L(xk=0)

1
L(x1)

. . .
1

L(xk−1)
(11.31)
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Appendix 11.B Derivation of the Interaction Representation

Let us formulate at first the interaction representation for an arbitrary dynamical
system given by the iterated map Ψ : Rn→ Rn

xt+1 =Ψ (xt) . (11.32)

Note that Ψ may be any map and will in general be the realization of a random
function. The interaction representation rests on the assumption that, instead of Ψ ,
we have a simplified version ψ the dynamics of which we can treat more or less
explicitly. In physics ψ often represents the dynamics of the isolated system whileΨ
contains also all the interactions with the external world or between the constituents
of the system. The idea is to find a new representation where this interaction features
explicitly. This can be done by fixing a reference time t with state xt . We set t =
0 during the derivations so that xt+k is equal to xk and reintroduce t afterwards.
We introduce a new state x̃k by the backward orbit of xk, defined in terms of the
approximate map ψ , as

x̃k = ψ−k (xk) (11.33)

so that x̃k = x0 for all k ≥ 0 if Ψ = ψ . We define the update step from any k ≥ 0 to
k+ 1 by applying ψ−(k+1) to both sides of the full dynamics given by Eq. (11.32),
to obtain the update rule for the transformed state as

x̃k+1 = Ψ̃ (x̃k) (11.34)

where
Ψ̃ (u) = ψ−(k+1)

(
Ψ
(

ψk (u)
))

(11.35)

for any state u. Obviously if Ψ = ψ we have Ψ̃ (u) = u so that x̃k+1 = x̃k. Hence, it
is reasonable to write the rule as

x̃k+1 = x̃k + ξ̃k+1 (11.36)

where
ξ̃k+1 = Ψ̃ (x̃k)− x̃k (11.37)

is obviously zero if ψ =Ψ . ξ̃k+1 may be seen as the residual interaction between the
true and the model dynamics so that the new representation is called the interaction
representation. These considerations are valid for any pair of functions ψ and Ψ .

Let us now consider more specifically the case that we have the explicit splitting
of Ψ into a systematic and a (more or less) random part, i.e.

Ψ (xk) = ψ (xk)+ξk+1
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The Linear Case
In the linear case these considerations become very simple. We have ψ (x) = Lx so
that ψk (x) = Lkx

x̃k =
1
Lk xk

and Eq. (11.35) immediately yields

x̃k+1 = x̃k + ξ̃k+1 (11.38)

with
ξ̃k+1 =

1
Lk+1 ξk+1 . (11.39)

Obviously the state in interaction representation is constant for all k if the noise is
zero, as it was intended.

The Nonlinear Case
We use ξ̃k+1 = x̃k+1− x̃k so that

ξ̃k+1 = ψ−(k+1) (xk+1)−ψ−k (xk)

= ψ−(k+1) (ψ (xk)+ξk+1)−ψ−k (xk)

= ψ−(k+1) (ψ (xk)+ξk+1)−ψ−(k+1) (ψ (xk))

= ψ−(k+1)
ψ(xk)

ξk+1 +O
(
‖ξ‖2

)
(11.40)

In leading order we may replace

ψ−(k+1)
ψ(xk)

ξk+1 = ψ−(k+1)
xk+1 ξk+1 +O

(
‖ξ‖2

)
so that in leading order

ξ̃k+1 = ψ−(k+1)
xk+1 ξk+1 =

1
L(x0)

1
L(x1)

. . .
1

L(xk)
ξk+1 , (11.41)

valid for k = 0,1 . . .. In particular,

ξ̃1 =
1

L(x0)
ξ1

which is what we use most of the time.
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Guided Self-Organization — A First Realization

Abstract: We introduce here an in the following chapters guided self-organization as the
combination of specific goals with self-organizing control. As a first realization we propose
in this chapter the guidance with supervised learning signals. First, we investigate how these
signals can be incorporated into the learning dynamics and present then a simple scenario
with direct motor teaching signals. We find that the homeokinetic controller explores around
the given motor patterns and thus may find a more suitable behavior for the particular body.
Second, we transfer this into a teaching at the level of sensor signals, which is very natural in
our setup. This mechanism of guidance builds the basis for higher level guiding mechanisms
as discussed in Chap. 13.

This is the first of three chapters that focus on the generation of goal-directed
behaviors from self-organizing control. For the combination of self-organizing and
external drives we coined [106] the term guided self-organization, which was be-
fore only rarely used e. g. in nano technology [31] or swarm robotics [147]. Goal-
oriented methods optimize for a specific task and require a prestructuring of the
control problem in high-dimensional systems. Self-organization, on the other side,
can generate coherent behavior and structure in the behavior space. Furthermore
self-organizing systems show a great flexibility and high tolerance against failures
and degrade gracefully rather than catastrophically [142, 143]. The perspective of
guided self-organization is to obtain a system which unites benefits of both.

What can we expect from a guided homeokinetic controller? We have seen so
far that a variety of behaviors emerged solely from the principle of homeokinesis.
The process of self-organization has quickly structured the vast space of behaviors
into a set that shows a coherent sensorimotor dynamics of the particular robot in its
environment. We can hope to shape the self-organization process to produce specific
behaviors within a short time if we can channel the exploration of the homeokinetic
controller towards certain desired behaviors. This is especially important in high-di-
mensional systems where the self-organized search for potentially useful behaviors
can take a long time.

Guided self-organizing differs in several aspects from typical ways to obtain
goal-directed behaviors in autonomous robots. Most commonly optimization meth-
ods are used that adapt the parameters of the control program to achieve a specific

235
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goal, for example via supervised learning, reinforcement learning [166], or evolu-
tionary algorithms [113]. In this setting the learning is expected to converge after
many iterations and its final result is the goal-directed behavior. With guided self-
organization the behavior develops during the interaction of the robot with its envi-
ronment. The homeokinetic learning process may not converge, but instead causes
different behaviors to be visited which increasingly satisfy the given goal more or
less strictly. In this way goal-directed modes can be found which fit well to the
particular robotic device.

On the methodological level we investigate three mechanisms of guidance in the
following chapters. The first one allows for the incorporation of supervised learning
signals, e. g. specific nominal motor commands. To make this possible we study the
integration of problem specific error functions into the homeokinetic learning dy-
namics in the next section. Using a distal learning [82] setup we also study the use
of teaching signals in terms of sensor values. The second mechanism, investigated in
Chap. 13, consists in formulating relationships between motors. This will be proven
to be an effective and simple way to introduce constraints into the system and fa-
cilitate the unsupervised development of specific behaviors. The third mechanism
for guiding the self-organization is discussed in Chap. 14 and uses online reward
signals to shape the emerging behaviors.

12.1 Integration of Problem Specific Error Functions

In this section we want to set the foundation for the combination of problem specific
goals with the homeokinetic controller. The combination of self-organizing pro-
cesses and additional constraints is, however, not trivial and the most complicated
part is how to balance the two. The emergent properties of self-organizing systems
are quickly lost if the appropriate working regime is left, but with the appropriate
mechanisms there is hope to guide the system gently into a desired direction without
loosing the benefits of a self-organizing dynamics.

Recall, that the learning dynamics of the homeokinetic controller was brought
about by the gradient descent on the TLE, see Chap. 5. An additional goal may
be specified in terms of a problem specified error function (PSEF) that is minimal
if the goal is fulfilled, such that we can also employ a gradient method. The most
simple approach to combine the TLE and such an PSEF would be a weighted sum
of both functions. If we now perform a gradient descent on this sum than both error
functions should be minimized, such that we minimize the TLE obtaining the self-
organizing behavior and follow the goal. This, however, is likely to either bring the
self-organizing system out of balance or to insufficiently follow the goal. The reason
is that the size of the TLE varies over orders of magnitude, whereas the additional
terms are often within one order of magnitude. Therefore we cannot find a fixed
weighting factor for the PSEF that would cause it to show an effect in the average
situation without destroying the self-organization process.
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We will use a trick to scale the gradient on the PSEF in order to be compatible
with the TLE. This is motivated by the natural gradient method, which states that for
an arbitrary Riemann metric of the parameter space the steepest direction is given by
the transformed gradient, which is obtained by multiplying with the inverse of the
metric matrix as proven by Amari [4]. We use the metric defined by the matrix J>J,
where J (Eq. 15.59 (p. 283)) is the Jacobi matrix of the sensorimotor loop in motor
space. Thus, we can think of a ‘scaling’ matrix that modifies the gradient according
to the sensitivity of the sensorimotor loop.

The PSEF is denoted by EG and it must be functionally dependent on the con-
troller parameters in order to derive a gradient. To avoid confusion we denote the
TLE by ET LE . The update rule for the controller matrix C can now given by

1
εc

∆C =−∂ET LE

∂C
− γ
(

J>J
)−1 ∂EG

∂C
, (12.1)

where ∂ET LE

∂C is the homeokinetic learning rule given by Eqs. (5.25, 15.26) and γ is
the guidance factor defining the strength of goal following. The entire update size is
still controlled by the learning rate εc. For the update of the parameter h we apply
the same procedure. More details may be found in [102].

12.2 Guidance by Teaching

Let us now investigate two concrete examples of problem specified error functions
(PSEFs) that implement the guidance by supervised learning signals. We call them
teaching signals, because they are given externally with respect to the self-organiz-
ing system. At first we will study motor teaching signals influencing the behavior
of the robot by directly providing wanted motor patterns.

The reader might wonder why this is of practical value since it requires precise
information about the motor setup and its dynamics. Even more reason for aston-
ishment is given by the fact that precise motor pattern, once present, can be used
to directly control the robot. Nevertheless, there are two aspects, which make the
guidance indeed useful. The explorative character of the homeokinetic controller
can be used to explore around the given motor pattern and thus find a more suitable
behavior for the particular situation. More importantly, the direct motor teaching
can be used by higher level guiding mechanisms as discussed in Chap. 13. These
are again unsupervised and require much less information about the dynamics of
the robotic device. After considering the implementation in more detail in the next
section we will afterwards translate this guidance mechanism to teaching signals in
sensor space.



P
e
rs

o
n
a
l 
C
o
p
y238 12 Guided Self-Organization — A First Realization

12.3 Direct Motor Teaching

In order use motor teaching signals we define a PSEF, which penalizes the misfit

ηG
t = yG

t − yt (12.2)

between motor teaching values yG
t and actual motor values yt (output by the homeo-

kinetic controller). Similarly to the prediction error for the forward model (3.9) we
find

EG = ηG
t
>ηG

t . (12.3)

Using the gradient descent we get the additional update for the controller matrix C
as

∂EG

∂C
=−G′ηG

t x>t , (12.4)

where G′ is the diagonal matrix given by G′i j = δi jg′i(Cx+ h). Similarly, for h we

obtain ∂EG

∂h = −G′ηG
t . These additional terms are integrated into the final learning

rule using Eq. (12.1). The guidance factor γ regulates the strength of the additional
drive and has to be determined empirically. A small value of γ leads to a small
influence of the teaching signal and results in a behavior that is mostly dominated
by the original homeokinetic controller. For large values of γ the teaching signals
are followed narrowly and few exploratory actions are performed, however, with the
increasing danger to break down the self-organization.

12.3.1 Experiment

Let us evaluate this mechanism of guidance by using the TWOWHEELED robot,
see Sects. 6.4.1 and 9.1.1. We want to show that teaching signals can be used to
specify a certain behavior and that the influence of the teaching can be conveniently
adjusted using γ . For that let us consider two different motor teaching signals, which
are subsequently applied. First the nominal motor values are given by a sine wave
and then by a rectangular function with the same value for both motors, i. e.

(yG
t )i =

{
0.85 · sin(ωt) t < 75
0.65 · sgn(sin(ωt)) otherwise ,

(12.5)

with i = 1,2 and ω = 2π/50. The choice of the teaching signal has no deeper mean-
ing. Note that the nominal motor values should not be too large because otherwise
the controller is driven into the saturation region of the motor neurons, see Fig. 3.7
(p. 36). The fixed point of the sensor dynamics in the simplified world condition is
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Fig. 12.1: TWOWHEELED robot controlled with homeokinetic controller and direct
motor teaching signals. (a) The teaching signals yG (identical in both components) are
followed partially by the motor values y1,2 after teaching was switched on with γ = 0.01 at
60 sec. (b) Time evolution of the controller parameters affecting the first motor is shown
to illustrate that only little changes are necessary, however, the adaptations do not vanish.
(c) Average value of the PSEF EG (for 5 experiments à 5 min) in dependence of γ (note
the logarithmic scale). The noise level (dotted gray line) is reached at γ = 1. Parameters:
εc = εA = 0.1, γ = 0.01 (a,b), update rate 100 Hz.

at y≈±0.65, see Sect. 6.3. This is a good mean teaching signal size, which was also
used in Eq. (12.5). As a rule of thumb we recommend confining the motor teaching
values to the interval [−0.85,0.85].

In Fig. 12.1 the produced motor values and the parameter dynamics are displayed
for different values of the guidance factor γ . For a low value of γ the desired behavior
is only followed by trend, whereas for higher values, e. g. γ = 0.01, the robot mostly
follows the given teaching value with occasional exploratory interruptions. These in-
terruptions cause the robot, for example, to move in curved fashion instead of strictly
driving in a straight line as the teaching signals dictate. The exploration around the
teaching signals might be useful to find modes which are better predictable or more
active. It was shown in the theory of cognitive deprivation (Sect. 9.1) that a long
performance of a single low-dimensional behavior can lead to the inaccuracy of the
adaptive forward model. Thus, the explorative actions can supply the forward model
with necessary sensation-actions pairs for complete learning.

The experiment demonstrated that motor teaching signals can be used to achieve
a specific behavior. This result is not very surprising, because the system is very
simple and the target behavior did not conflict with the homeokinetic principle (sen-
sitive and predictable). However, it served as a proof of principle and showed that
the balance between target behavior and remaining self-organized behavior can be
adjusted using a single parameter.
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12.4 Direct Sensor Teaching and Distal Learning

In this section we transfer the direct teaching paradigm from motor teaching signals
(Sect. 12.3) to sensor teaching signals. This is a useful way of teaching because de-
sired sensor values can be more easily obtained than motor values, for instance by
moving the robot, or parts of the robot by hand. This kind of teaching is also com-
monly used when humans learn a new skill, e. g. think of a tennis trainer that teaches
a new stroke by moving the arm and the racket of the learner. Thus, a series of nom-
inal sensations can be acquired that can serve as teaching signals. Setups where the
desired outputs are provided in a different domain than the actual controller outputs
are called distal learning [46, 82, 163]. Usually a forward model is learned that maps
actions to sensations (or more generally to the space of the desired output signals).
Then the mismatch between a desired and occurred sensation can be transformed
to the required changes of action by inverting the forward model. Another option is
the use of an inverse model, which learns the mapping from sensations to actions.
The main difference between inverse models and inverted forward models is the
handling of noise, which is amplified by the inverted forward model and damped by
an inverse model.

In our case a forward model is already at hand, namely, it is given by the internal
forward model, see Eqs. (3.6, 4.2). Let the sensor teaching signal be given by xG

t .
The distal learning error is the misfit ξ G

t between desired sensations xG
t and actual

sensations xt , thus

ξ G
t = xG

t − xt . (12.6)

From Eq. (12.6) we can calculate the misfit ηG
t in motor space via the forward model

M (3.6) in a linearized way by

ηG
t = A+ξ G

t , (12.7)

where A = ∂M(x,y)
∂y . In our linear implementations of the forward model the parame-

ter matrix A features explicitly. Now the update formulas for C and h from the direct
motor teaching setup are used, see Eq. (12.4).

Alternatively this guidance mechanism can be obtained in a very similar way
using the harmony extension as introduced in Sect. 15.1.1.4 if the distal learning
error ξ G

t is added to the normal prediction error ξt .
The application to the TWOWHEELED driving robot, as it was done in the previ-

ous section, is trivial since the forward model consists essentially of a unit matrix.
Among the previously considered robots the SPHERICAL has a non-trivial relation
between sensor and motor values, hence we will use it in the following experiment.
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Fig. 12.2: SPHERICAL in a homeokinetic plus distal learning setup. (a) Illustration of
the robot with its sensor values. (b) Behavior with the distal learning signal, Eq. (12.8).
The plot shows the percentage of rotation time around each of the internal axes and the
number of times the behavior was changed for different values of the guidance factor γ (no
teaching for γ=0). The rotation around the red (first) axis is clearly preferred for non-zero
γ . The mean and standard deviation are plotted for 20 runs each 60 min long, excluding
the first 10 min (initial transient, no guidance). For too large values of the guidance factor
the self-organization process is too much disturbed such that the robot gets trapped in a
random behavior (dash-dotted line). Parameters: εc = εA = 0.1, update rate 100 Hz.

12.4.1 Experiment

In this experiment we use the SPHERICAL, as described in Sect. 8.2. For each axis
we have one sensor value that is the z-component of the axis vector in world coor-
dinates, which is illustrated in Fig. 12.2(a). We use the extended forward model as
proposed in Sect. 9.2 with increased the awareness of causality, see Sects. 9.2.4 and
15.1.1.2.

The objective of this experiment is to show that a simple teaching signal in terms
of sensor values can be used to effectively guide the behavior of the SPHERICAL
towards rotations around the first internal axis. In such a mode of behavior the first
sensor value remains at a low absolute value, see Fig. 12.2(a). This can be directly
specified in the distal learning setting by putting

xG
t =

 0
(xt)2
(xt)3

 , (12.8)

thus only the first component of the sensor value produces an error signal. To evalu-
ate, we performed for different values of the guidance factor 10 runs each, with the
robot on the flat ground. Each run was 60 min long.

The distal learning setup requires a well trained forward model. Therefore pure
self-organization was used during the first 10 min of the experiment (γ = 0). As a
descriptive measure of the behavior, we used the index of the internal axis around
which the highest rotational velocity was measured at each moment of time. Fig-
ure 12.2(b) displays for different values of the guidance factor and for each of the
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axes the percentage of time it was the major axis of rotation. Without teaching there
is no preferred axis of rotation. With distal learning the robot shows a significant
preference (up to 75%) for a rotation around the first axis. For overly strong teach-
ing, a large variance in the performance occurs. This is caused by a destructive
influence of the teaching signal on the homeokinetic learning dynamics. Remember
that the rolling modes can emerge due to the fine regulation of the sensorimotor
loop to the working regime of the homeokinetic controller, which cannot be main-
tained for large values of γ . The reader is invited to try the simulation described in
Experiment 12.1.

Experiment 12.1: SPHERICAL with direct sensor teaching.
Start the simulation Spherical Robot - Direct Sensor Teaching The simulation is now running without guidance,
i. e. γ = 0.0. The robot will start to roll and change the axis of rotation every so often.
Observe the change in behavior when you set the guidance factor to γ = 0.003. The robot changes to rotate around
the red axis. You can change the teaching signal to another axis by >axis=1,2,3. Try different guidance strengths
(parameter gamma) and observe the parameters as usual.

Why is it not possible with this method to force the controller to stay in the rota-
tional mode around the first axis? The answer is rather intuitive: While the robot is
in this rotational mode the teaching signal is negligible. However, the sensitization
property of homeokinetic learning increases the impact of the first sensor, such that
the mode becomes eventually unstable again. Again this may be considered as an
advantage since the temporary breaking out avoids the cognitive deprivation effect
(Sect. 9.1). Note, moreover, that the learning success in the current setting of con-
troller and forward model could not be achieved by the distal learning alone, at least
not with a constant learning signal.

To summarize, the direct teaching mechanism proposed in Sect. 12.3 allows one
to specify motor patterns that are more or less closely followed, depending on the
strength of integrating the additional drives into the learning dynamics. In this sec-
tion we considered sensor teaching signals that were transformed into motor teach-
ing signals using the internal forward model. We have shown that the SPHERICAL
with the homeokinetic controller can be guided to locomote mostly around one
particular axis, by specifying a constant sensor teaching signal at one of the sen-
sors [104].

The supervised learning in terms of sensor signals is one step in the direction
of imitation learning. Imitation learning [149] deals with how an autonomous robot
can acquire behaviors from other agents or from humans. In this setting the robot
can typically perceive the movement via a camera or perhaps via its joint sensors
if the demonstrator was moving the parts of the robot’s body. In the latter case the
methods proposed here can be directly used. If only visual information is available
the correspondence problem concerning the mismatch between the teacher’s body
and the robot’s body needs to be resolved [34, 45, 145], which is not discussed here.
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Channeling Self-Organization

Abstract: Many desired behaviors are distinguished by a certain structure in the motor
or sensor activity. In particular the phase relation between different motors or sensors cap-
ture a lot of this structure. We will now propose a way to embed these relations as soft
constrains to the learning system, such that we break certain symmetries and let desired be-
haviors emerge. Starting from the guidance by teaching we introduce the concept of cross-
motor teaching that allows to specify abstract relations between motor channels. First we
study simple pairwise relations and shape the behavior of the TWOWHEELED robot to drive
mostly straight by a relation between both motor neurons. Then we will consider a high-di-
mensional robot—the ARMBAND and demonstrate fast locomotion behaviors from scratch
by guided self-organization.

Many behaviors, in particular for locomotion, have a particular structure with
respect to the phase relation of the joints. We will now discuss how to provide the
control system with information about these relations of the desired behaviors to
influence the self-organization process. For that we will introduce soft constraints
which break symmetries and reduce the effective dimension of the sensorimotor dy-
namics and thus guide the self-organization along a sub-space of the original control
problem. In biological systems these kinds of constraints are often implemented on
a low level of neuronal circuitry, e. g. pairs of antagonistic muscles are connected
such that activity of one inhibits activity of the other on the level of α-motor neurons
and inter-neurons in the spinal cord [128].

Inspired by this regulation we use the motor values of one motor neuron as a
teaching signal for another motor neuron. We call this method cross-motor teaching
and use cross-motor connections to describe which motor neuron receives a teach-
ing signal from which other neuron. Note that despite the use of ‘teaching signals’
the algorithm is completely unsupervised, because the signals are generated inter-
nally. Before we go into the details let us briefly make a connection to the symmetry
breaking and conservation discussion in Sect. 5.3.6. The self-organization progress
preserves a high amount of symmetries of the physical system. As an example the
TWOWHEELED drives forward and backward and rotates clockwise and counter-
clockwise equally often. The physical system (morphology of the body and interac-
tion) is essentially symmetric with respect to forward-backward, left-right (lateral),
and also straight-rotational behavior. To the contrary, the LONGVEHICLE is lacking
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the forward-backward symmetry and, more importantly, also the straight-rotational
symmetry because of friction and inertia. This is also reflected in behavior in that
the robot is more driving straight than rotating, see Sect. 6.4.1.

Let us see how we can permanently break some of these symmetries with the
following mechanisms.

To introduce this method we will first consider pairwise relations and then gen-
eralize to permutation relations.

13.1 From Spontaneous to Guided Symmetry Breaking

First we want to influence the controller to prefer a pairwise in phase or antiphase
relation in the motor patterns [104]. Let us consider a particular pair of motors (r,s).
We place a cross-motor connection from r to s and back, which means that the motor
neuron s receives its teaching signal from motor neuron r and vice versa. In this way
both motor neurons are driven to an in phase activity. The (internal) teaching signal
is (

yG
t
)

r = (yt)s and
(
yG

t
)

s = (yt)r , (13.1)

which is used in Eqs. (12.1–12.4).
Likewise, an antiphase relation can be expressed with

(
yG

t
)

r = −(yt)s and vice
versa. In this simple setup the cross-motor connections have either a positive or neg-
ative sign. For those motors i that are not part of a pair we need to set

(
yG

t
)

i = (yt)i,
in order to produce no error signal in the framework of direct motor teaching, see
Sect. 12.3. More complex connection setups are discussed later.

Experiment

To illustrate the concept we will consider the TWOWHEELED, see Sects. 6.4.1 and
9.1.1. The robot has two motors actuated according to y1 and y2. Let the goal be to
prefer straight driving. This can be obtained by an in phase relation between both
motors following Eq. (13.1), i. e.(

yG
t
)

1 = (yt)2 and
(
yG

t
)

2 = (yt)1 . (13.2)

For experimental evaluation we placed the robot in an environment cluttered with
obstacles, see also Experiment 13.1

We performed, for different values of the factor γ , five runs of 20 min length. In
order to quantify the influence of the cross-motor teaching we recorded the trajec-
tory, the linear velocity, and the angular velocity of the robot. We expect an increase
in linear velocity because the robot is to move straight instead of turning. For the
same reason the angular velocity should go down. In Fig. 13.1 a sample trajectory
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Fig. 13.1: Behavior of the TWOWHEELED when guided to move preferably straight.
(a) Mean and standard deviation (of 5 runs each 20 min) of the area coverage (area),
the average velocity 〈|v |〉, and the average turning velocity 〈|ωz|〉 for different values
of the guidance factor γ . Area coverage (box counting method) is given relative to the
the case without influence (γ =0: 100%) (right axis). The robot is driving straighter and
its trajectory covers more area for larger γ , until at large γ the teaching dominates the
behavior of the robot. (b) Example trajectories for different guidance factors. Parameters:
εc = εA = 0.01, update rate 100 Hz.

and the behavioral quantifications are plotted. Additionally, we plot the relative area
coverage1, which reflects how much area of the environment was covered by the
robot with cross-motor teaching compared to the original homeokinetic controller.
As expected, the robot shows a distinct decrease in mean turning velocity and a
higher area coverage with increasing values of the guidance factor. Note that the
robot is still performing turns and drives both backwards and forwards and does not
get stuck at the walls, as seen in the trajectory in Fig. 13.1(b). The properties of the
homeokinetic controller, such as sensitivity and exploration, remain.

We have seen that a pairwise cross-motor teaching can be used to guide the
self-organizing control to drive mostly straight in the TWOWHEELED. The strength
of this preference can be adjusted by the guidance factor. The algorithm is self-
supervised and the only specific information that is given is the pair of motors to

1 The area coverage of the trajectory is calculated using a box-counting method.
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Experiment 13.1: TWOWHEELED robot with cross-motor teaching.
The simulation Guided TWOWHEELED drives straight starts with the robot in a cluttered environment (smaller than
in Fig. 13.1) without guidance, i. e. γ = 0.0. The robot will equally probable move forward, backward and turn in both
directions.
Observe the change in behavior when you set the guidance factor (gamma) to γ = 0.02. The robot starts to move more
straight than before. After a while set γ = 0.5, which is too large for this application. The robot will now drive very
straight but will get stuck at the walls.

be synchronized. Let us now proceed to a more flexible specification of cross-motor
connections in order to deal with more complex situations.

13.2 Multiple Motor Relations

Now we want to consider a more general cross-motor connection setup where each
motor has one incoming and one outgoing connection, such that there is still only
one teaching signal per motor neuron [105]. The cross-motor connections can be
described by a permutation πm of the m motor neurons assigning each motor neuron
a source of teaching input. The teaching signal is then given by (dropping the time
index)

yG
i = yπm(i) for i = 1, . . . ,m. (13.3)

Additionally a sign function could be used defines whether the motors are supposed
to be in phase or antiphase, but we do not need it in the following. The pairwise
setup (Eq. (13.1)) is of course a special case of this notation. Note, that with a cyclic
schema of connections also a group of motors can be synchronized.

13.2.1 Guiding Towards Directed Locomotion

Let us now consider a more complex robot—the ARMBAND. The name comes from
the German word Armband meaning a wristband or bracelet of a watch. We have
considered a similar robot already in Sect. 6.4.3, which has additional slider-joints in
the segments. The robot a locomotion behavior with a decentralized control setting,
namely each joint was individual and independently controlled by a homeokinetic
controller. In this section we will see that we can explicitly guide the robot to a
directed and much faster locomotion in our normal control setting (one controller
for the entire robot).

The ARMBAND consists of a sequence of m+1 flat segments placed in a ring-like
configuration, where subsequent segments are connected by hinge joints (in total m).
The resulting body has the appearance of a bracelet or chain, see Fig. 13.2(a),(b).
Each joint is driven by a servo motor and has a joint-angle sensor. The joints have a
center position, which is such that the robot is in a perfectly circular configuration,
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(a) (b)

(c)

Fig. 13.2: The robot ARMBAND. (a,b) Screenshots from the simulation. The transparent
sphere in the center marks the center of mass of the robot. (b) Configuration where all
sensors are zero (joint center position). (c) Schematic view of the robot. The prismatic
structures are hinge joints actuated by servo motors. All joints are equally constructed.
The motor values and sensor values are defined in terms of joint deflection angles (θi)
from the center (initial) position (see (b)). The motor values are scaled to the interval
[−1,1]. The joint limits are: max= 4/3 ·2π/m, and min=−π/3.

see Fig. 13.2(b) (angle of 2π/m with respect to a straight positioning). The motor
values and sensor values are given in terms of joint angle deviations from the center,
as displayed in Fig. 13.2(c). Note that the joints are highly coupled through the ring
configuration. Therefore, an independent movement of a single joint is not possible.
Instead it has to be accompanied by a movement of the neighboring joints and of
distant joints.

Since the robot is symmetric there is by construction no preferred direction
of motion, meaning that the robot controlled by the homeokinetic controller will
equally probable move forward or backward. The robot cannot turn or move side-
ways, but it can produce a variety of postures and locomotion patterns.

With the method of cross-motor teaching we can help to break different symme-
tries, such that the robot is more likely to perform a directed motion. One possibility
is to connect motors on opposite sides of the robot with a bias in clockwise or coun-
terclockwise direction. For that we define the permutation, (used in Eq. (13.3)), as

πm(i) = (i+ k+ bm/2c) mod m , (13.4)

where k ∈ {−1,0,1} and b·c denotes the truncation rounding (floor). We will only
use positive connections, such that the sign function is not required. Thus, the teach-
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ing signals are (omitting the time index)

yG
i = y(i+k+bm/2c) mod m for i = 1, . . . ,m . (13.5)

The choice of k depends on the desired direction of motion and on whether the
number of joints m is even or odd. If m is even then k =−1 and k = 1 are used for
both directions (forward or backward) and k = 0 represents a symmetric connection
setup. In the latter case the robot will not prefer a direction of motion and the be-
havior is similar to the one without guidance. For an odd value of m, which is also
used here, k = 0 and k = 1 need to be used for backward and forward motion.

Fig. 13.3: ARMBAND with cross-motor connections. The arrows indicate unidirectional
cross-motor connections, where the head points to the receiving unit. All links are equal,
but for visibility reasons only four links are drawn boldly. For this connection setup the
robot preferably moves leftwards.

In the following experiments the robot has m = 13 motors. The motor connec-
tions for k = 1 are illustrated in Fig. 13.3. Each motor connection is displayed by
an arrow pointing to the receiving motor. Note that the connections are directed and
a motor neuron is not teaching the motor neuron from which it is receiving teach-
ing signals. For k = 0 all arrows are inverted, meaning that for each connection the
sending and receiving motor neurons swap roles.

To evaluate the performance we conducted, for different values of the guidance
factor γ , 5 trials each 30 min long. In a first setting the cross-motor connections were
fixed (k = 1) for the entire duration of the experiment. Without guidance the robot
moves equally to both directions but with comparably low velocity. This can be
seen at the mean of the absolute velocity in Fig. 13.4(a). If the value of the guidance
factor is chosen conveniently, we observed the formation of a locomotion behavior
after a very short time and the robot moves in one direction with varying speed
see Fig. 13.4(b) for 3 velocity traces. Note that this behavior requires all joints of
the robot to be highly coordinated. We also observe a peak of high velocity after
the first few minutes, which is followed by a dip before a more steady regime is
attained. During this time the controller is going from a subcritical regime (at t = 0)
to a slightly supercritical regime.

The locomotive behavior can also be seen in Video 13.1 for a low value of guid-
ance factor (γs = 0.001) and in Video 13.2 for a medium value of guidance fac-
tor (γ = 0.003). The average velocity of the robot increased distinctively with ris-
ing guidance factors, see Fig. 13.4(a). However, for excessively large values of the



P
e
rs

o
n
a
l 
C
o
p
y13.2 Multiple Motor Relations 249

(a)

0.000 0.002 0.004 0.006 0.008 0.010

Γ0

1

2

3

4

v

X  v ¤\

Xv\

(b)

500 1000 1500

time

@secD

0.5

1.0

1.5

2.0

2.5

v

run 3

run 2

run 1

Fig. 13.4: Performance of the ARMBAND with constant cross-motor teaching.
(a) Mean and standard deviation of the average velocity 〈v〉 and the average absolute
velocity 〈|v |〉 of 5 runs for different value of the guidance factor γ . (b) Velocity of the
robot v (averaged over 1 minute sliding window) for 3 runs at γ = 0.003. Parameters:
k = 1, εc = εA = 0.1, update rate 100 Hz.

Video 13.1: ARMBAND learns to locomote — weakly guided. Behavior of the robot
with cross-motor teaching and weak guidance (γ = 0.001). A slow locomotive be-
havior with different velocities is exhibited. Explorative actions cause the posture of
the robot to vary in the course of time. The video can be watched at http://
playfulmachines.com.

guidance factor the velocity goes down again. This occurs for two reasons: First,
the cross-motor teaching has a too strong influence on the working regime of the
homeokinetic controller and second the actual motor pattern of the locomotion be-
havior does not perfectly obey the relations between the motor values as specified
by Eq. (13.5). In order to satisfy the constraints imposed by Eq. (13.5) all motor
values need to be equal, which is of course not the case in the locomotion behavior.

In a second setup we changed the cross-motor connections every 5 min, i. e. k
was changed from 0 to 1 and back. A value of k = 0 should lead to a negative
velocity and a k = 1 to a positive velocity. To study the dependence on the guidance
factor and to measure the performance we use the average absolute velocity 〈|v |〉
and the correlation of the velocity with the configuration of the coupling ρ(v ,k), see
Fig. 13.5(a). Without guidance (γ = 0) there is, as expected, no correlation with the
supposed direction of locomotion. For a range of values of the guidance factor we
find a high total locomotion speed with a strong correlation to the supposed direction
of motion. Note that the size of the correlation depends on the length of the intervals
of one connection setting. For long intervals the correlation will approach one. In
Fig. 13.5(b) the velocity of the robot is plotted for different runs with the same value
of the guidance factor that was used in the previous experiment (γ = 0.003). We

http://playfulmachines.com/videos.html#vid:wheelie:rolling:slow
http://playfulmachines.com/videos.html#vid:wheelie:rolling:slow
http://playfulmachines.com/videos.html#vid:wheelie:rolling:slow
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Video 13.2: ARMBAND quickly learns to locomote. Behavior of the robot with cross-
motor teaching and medium guidance (γ = 0.003). Comparable fast locomotive behavior
emerges quickly and is persistent. Nevertheless the velocity varies. Only small exploratory
actions are takes, such that the posture is mainly constant. The video can be watched at
http://playfulmachines.com.
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Fig. 13.5: Performance of the ARMBAND with changing cross-motor teaching.
(a) Mean and standard deviation of the average absolute velocity 〈|v |〉 and the correla-
tion ρ(v ,k) of the velocity with the configuration of the coupling for 5 runs with different
values of the guidance factor γ . (b) Velocity (averages over 10 sec sliding windows) of
the robot for 3 runs at γ = 0.003 and the target direction of motion D = 2k−1 for better
visibility. Parameters: εc = εA = 0.1, update rate 100 Hz.

observe that the robot changes the direction of motion shortly after the configuration
of the coupling was changed, see Video 13.3 or do Experiment 13.2. In the latter the
robot also has to overcome some barriers.

13.2.2 Scaling Properties

The locomotion of the robot is essentially influenced by the number of cross-motor
connections. To study this we use again the fixed connectivity. In a series of simu-
lations a number 0 ≤ l ≤ m of equally spaced cross-motor connections (Fig. 13.3)
are used. With increasing l the robot starts to locomote earlier. Full performance is
reached already if 8 out of the 13 connections are used, see Fig. 13.6(a).

In order to study the scaling properties of the learning algorithm we varied the
number of segments m of the robot and thus the dimensionality of the control prob-
lem. The results are astonishing, see Fig. 13.6(b): The behavior is learned with the
same speed also for large number (40) of segments. There is no scaling problem here

http://playfulmachines.com/videos.html#vid:wheelie:rolling:fast
http://playfulmachines.com/videos.html#vid:wheelie:rolling:fast
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Video 13.3: ARMBAND changing the direc-
tion of motion. The behavior of the robot
with cross-motor teaching if the connections
are changed. The video starts with a fast lo-
comotive behavior to the left (k = 1). At time
5:00 the couplings are changed (k = 0) and
the robot slowly stops. A period of probing
actions follows until a reversed locomotion
starts to show up. The video can be watched
at http://playfulmachines.com.

Experiment 13.2: Locomotion of the ARMBAND.
The simulation ARMBAND with cross-motor teaching starts in pause mode, so that the robot can be inspected. Press
<Ctrl>+P to toggle the pause mode. At the beginning the guidance is switched off and the values of γ = 0.0 (gamma)
and D = 1 are displayed. Observe the unguided behavior (speed up the simulation if impatient using +/-). Use the
MATRIXVIZ (<Ctrl>+M) to observe the motor values y and the controller matrix C. Enable now weak guidance
with:
>gamma=0.001
The robot will slowly start to perform a locomotion in one direction. Observe the change in behavior when you change
the guidance factor to gamma=0.005 and then the connection setup with D = -1. Keep in mind that a change in
the guidance needs time to show up in the behavior. Therefore it is recommended to wait about 30 seconds after a
change in parameters. There are also bars on the floor to overcome. If the robot gets stuck then speed up and observe
the slow change in motor activity—the robot will manage eventually.

for the following reason. In the closed loop with an approximate feedback strength
(self-regulated by the homeokinetic controller) the robot needs only very little influ-
ence to roll. The length of the robot can even help because other behavioral modes
(e. g. wobbling) are damped increasingly due to gravitational forces. For the same
reason, small robots are slower than medium ones. Large robots are again slower
because the available forces at the joints become too weak.
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Fig. 13.6: Scaling of learning time and performance for different robot complexity.
The plots show mean and standard deviation of the distance traveled by the robot (‘dist’
in units of 1 segment size) and of the time-to-start (‘tts’ in seconds) of 20 runs à 10 min
(γ = 0.003). (a) Performance as a function of the number of cross-motor connections l
(equally spaced around a robot with m= 13 joints). (b) Performance for different numbers
of segments m (DoF) with full cross-motor connectivity (l = m).

http://playfulmachines.com/videos.html#vid:wheelie:rolling:change
http://playfulmachines.com/videos.html#vid:wheelie:rolling:change
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The experiment illustrates that specific behaviors can be achieved in a high-di-
mensional robot by using cross-motor teachings. Cross-motor connections can break
the symmetry between the two directions of motion such that a locomotion behavior
is produced quickly. When the connections are switched during runtime, the behav-
ior of the robot changes reliably.

The mechanism proposed here can also be transferred to sensor space using the
direct sensor teaching (Sect. 12.4) instead of the motor teaching. One obtains a
cross-sensor teaching analogously to the definitions given above. This can become
useful, for example if a certain behavior is demonstrated by a human operator by ac-
tivity moving the robot. In the case of the ARMBAND, one can imagine pushing the
robot along the ground forcing it into a locomotion pattern. Based on the observed
sensor readings, the correlations between the sensor channels can be determined and
used as a basis for the construction of a specific cross-sensor teaching setup.

13.3 Summary

Starting from the guidance by teaching we introduced the concept of cross-motor
teaching allowing for the specification of abstract relations between motor channels.
There are no external teaching signals required, because the motor values are used
mutually as teaching signals. The only specific information put into the system is
the cross-motor relation. First we studied simple pairwise relations and shaped the
behavior of the TWOWHEELED robot to drive mostly straight through the coupling
between both motors. The couplings introduce soft constraints that guide the self-or-
ganization process to a subspace of the entire sensorimotor space and therewith the
effective dimension of the search space for behaviors is reduced. This was demon-
strated using a high-dimensional robot—the ARMBAND. With a simple cross-motor
teaching the robot developed within a short time fast locomotion behaviors from
scratch. The direction of motion was altered by a change in the connection setup.
Remarkable is also the scaling property with respect to the dimensionality of the
control problem.
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Reward-Driven Self-Organization

Abstract: In this chapter we investigate how to guide the self-organization process by pro-
viding an online reward or punishment. The starting point for the following considerations
is that the homeokinetic controller explores the behavioral space of the controlled system
and that those behaviors which are well predictable will persist longer than others. The idea
we pursue in this chapter is to regulate the lifetimes of the transient according to the reward
or punishment. The mechanism is applied to the SPHERICAL with two goals, fast motion
and curved rolling.

This chapter focuses on the use of online reward or punishment to guide the
self-organization process, see also [106]. The essential feature of the homeokinetic
controller that we exploit is the exploration of the behavioral space of the controlled
system, for instance the behavior of the BARREL that showed a systematic sweeping
through the accessible frequencies of the sensor state reflected by rolling modes
with different velocities (Sect. 7.3.3). In the case of the SPHERICAL with its three
dimensional motor and sensor space we also observed a sweeping through a large
set of possible behaviors (Sect. 8.2). In a setup where the robot can move freely, it
will exhibit different slow and fast rolling modes around different axes.

Before introducing the new mechanisms, let us recall an important feature of
homeokinetic control, namely that well predictable behaviors persist longer than
others, which we called the temperature effect see Sect. 5.3.4. Due to this effect the
well predictable behaviors are also quickly found because badly predictable ones
are left quickly. Translating this into the case of reward and punishment, we want
that rewarded behaviors persist longer than punishment ones and that predictable
ones are found quickly. Thus we have to modulate the learning speed according to
the online reinforcement signal in a way that in rewarded situations the adaptation
speed is reduced and in punished ones the speed in increased. At first glance it
seems to be counterintuitive that we have to reduce learning speed in order to keep
a behavior, but the self-organized search should be slowed down to find even better
behaviors locally. Moreover, the controller is already able to produce the behavior
at the time it is exhibited by the robot.

Let us define a reward signal r(t) ∈ R for each time t, which should be consid-
ered as a punishment for negative values and as a reward for positive values. To
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Fig. 14.1: Reward dependent factor and the SPHERICAL in world coordinates.
(a) Factor for the modified error function, Eq. (14.1); (b) SPHERICAL with angular ve-
locity (ωz) around the z-axis and velocity vector v in x-y-plane. Note that x,y,z refer here
to the axes of the world coordinate system.

incorporate the reward signal we define a new error function in the following way

Er = (1− tanh(r(t)))E , (14.1)

where E is the usual TLE defined in Eq. (5.9). The factor (1− tanh(r(t)) approaches
zero for large positive rewards and 2 for large negative rewards as depicted in
Fig. 14.1(a). The multiplication of the error function is the same as multiplying
the learning rate. Thus, we could similarly write εr

c,t = (1− tanh(r(t)))εc. The con-
struction of the new error function Eq. (14.1) follows our considerations above.
For a reward (r > 0) the factor (1− tanh(r(t)) is smaller than 1 and thus decreases
the learning speed. For a punishment (r < 0) the learning speed is increased. We
can expect that rewarded behaviors persists longer and punishment behaviors are
left quicker. The hyperbolic tangent imposes constraints on effective values of r(t),
namely they have in the interval (−3,3) a differentiable effect on the learning dy-
namics. However, it is not required that the interval is being utilized by a particular
reward function, nor does it do any harm to exceed the range.

Let us now apply the mechanism to shape the behaviors of the SPHERICAL. In
the following sections we will demonstrate two different behaviors which can be
effectively guided.

14.1 Reinforcing Speed

In the following experiment we will use the SPHERICAL, as described in Sect. 8.2.
One of the simplest possible desired behaviors of this robot is to move fast. Let us
construct the reward function for this goal. For small velocities the reward should
be negative, thus causing a stronger change of behavior, whereas larger velocities
should result in a positive reward. To achieve that, the reinforcement signal can be
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Fig. 14.2: Performance of the SPHERICAL rewarded for speed. (a) Mean and std.
deviation of the velocity of the SPHERICAL for 20 runs each 60 min long with (red) and
without (blue) speed reinforcement, sorted by velocity. The label ‘all’ denotes the mean
and std. deviation over the means of all runs, which is significantly (p < 0.001) higher
for the reinforced runs. (b) Time course of the robot’s velocity for run number 10 and 14,
where blue/dotted shows the normal case and red/solid line shows the reinforced case.

expressed as

r(t) =
1
3
‖v t‖−1 , (14.2)

where v t is the velocity vector of the robot, see Fig. 14.1(b). In order to compare
the results with the unguided case the reward is shifted, such that it is zero for the
average velocity of normal runs. The scaling is done to keep the reward within the
effective range1.

We conducted 20 trials with the SPHERICAL with reinforcement and 20 trials
without reinforcement, all with random initial conditions, each for 60 min in simu-
lated real time on a flat surface without obstacles. The robot also experiences rolling
friction, so that fast rolling really requires continuous motor activity. In Fig. 14.2 the
mean velocity (measured at the center of the robot) for each simulation is plotted
and the velocity trace of the robot for two reinforced and two normal runs are dis-
played as well. The simulations are sorted by performance and plotted pairwise for
comparison. As desired, the mean velocities of the reinforced runs are larger than
the ones of the normal runs. This is especially evident in the overall mean (mean of
means marked with ‘all’ in Fig. 14.2(a)), which is significantly different. The null
hypothesis that the set of means of the reinforced runs and of the normals runs have
an indistinguishable mean was rejected with p < 0.001 using the t-test. However,
since straight and also fast rolling modes are easily predictable and active they are
also exhibited without reinforcement for a long time. It is important to note that
the fast rolling modes are also found again, after the robot was moving slower, see
Fig. 14.2(b).

1 Note that here the minimal reward is−1, so we do not fully use the effective range of punishment.
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The guidance of the homeokinetic controller using a reward for fast motion has
shown to increase the average speed of the robot significantly. Although there are
also trials where no increased speed was found.

14.2 Reinforcing Spin

In a different setup we want the robot to follow curves and spin at the spot. We use
the angular velocity ωz around the z-axis of the world coordinates system, which is
perpendicular to the ground plane, as depicted in Fig. 14.1(b). The reward function
is now given by

r(t) =
1
3
‖ωz‖−1 . (14.3)

Again the reward is scaled and shifted to be zero for normal runs and to be in an
appropriate interval. Positive reward can be obtained by rolling in a curved fashion
or by entering a pirouette mode. The latter can be compared to a pirouette done by
figure-skaters—with some initial rotation the masses are moved towards the center,
so that the robot spins fast in place. The robot also experiences rolling friction, so
that fast pirouettes are not persistent.

Again, we conducted 20 trials with reinforcement and 20 trials without rein-
forcement, each for 60 min simulated real time on a flat surface without obstacles. In
Fig. 14.3(a) the mean angular velocity ωz for each simulation is plotted, again sorted
by performance. The time evolution of the angular velocity for two reinforced and
two normal runs are displayed in Fig. 14.3(b). In this scenario the differences be-

(a)

1 3 5 7 9 11 13 15 17 19 all
run

5

10

15

20

an gular vel.

(b)

 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000  3500

an
g

u
la

r 
v

el
.

time in seconds

run
 10

normal

reinforced

 0

 5

 10

 15

 20

an
g

u
la

r 
v

el
. run

  14

normal

reinforced

Fig. 14.3: Performance of the SPHERICAL rewarded for spin. (a) Mean and std. devia-
tion of the angular velocity ωz of the SPHERICAL for 20 runs each 60 min long with (red)
and without (blue) spin reinforcement, sorted by angular velocity. The label ‘all’ denotes
the mean and std. deviation over the means of all runs. (b) Time course of the velocity for
run number 12 and 20, where blue/dotted shows the normal case and red/solid line shows
the reinforced case.
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tween the normal runs and the reinforced runs are remarkable. Nearly all reinforced
runs show a large mean angular velocity. The reason for this drastic difference is
that these spinning modes are less predictable and therefore quickly abandoned in
the non-reinforced setup. The traces show that the robot in a normal setup rarely
performs spinning motion, whereas the reinforced robot performs, after some time
of exploration, very fast spinning motions, which are persistent for several minutes.
In this setup it can also be seen that the rewarded behaviors are found again after
they were lost, see Fig. 14.3(b).

The mechanism to modulate the learning speed by a reward signal showed a
strong effect on the behavior of the SPHERICAL. When controlled by the homeo-
kinetic controller without guidance the robot rarely exhibits narrow curves or spin-
ning behavior. In contrast the guided controller engaged the system into curved mo-
tion most of the time. One might wonder how it is possible that this technique is
able to reach a behavior that is normally not exhibited. The reason is that when
the robot is starting to follow a curve, then the learning rate of the controller goes
down, although the forward model is still learning normally. In the unguided case
the prediction error rises (because it is a new behavior) and thus the controller will
quickly leave this behavior. This actually happens before a fast spinning is reached.
In the rewarded case the forward model is able to capture the behavior before it is
left (because of the slower drift), which in turn enables the control system to enter
modes of more narrow curves.

14.3 Discussion

In this section we want to summarize and discuss the mechanisms of guidance. In
Chap. 12 we proposed two methods to guide the otherwise freely self-organized
behavior with teaching signals. We defined an appropriate error function that allows
for directly specifying a desired motor pattern and verified its functioning with a
simple robot experiment. The balance between self-organized behavior and target
behavior can be adjusted with a single parameter. In order to be able to work with
teaching signals in sensor space we used the internal forward model to transform
them into motor teaching signals. In this framework, the SPHERICAL was taught to
prefer the rotation around one particular axis solely by requesting a zero value of
the sensor value measuring the axis orientation of that particular axis.

The teaching mechanisms formed the basis for further investigations that aim at
higher level guiding mechanisms, which we considered in Chap. 13. We introduced
cross-motor teachings to specify relations between motor channels, such as in phase
or antiphase activity. This induces soft constraints and therewith reduces the effec-
tive dimensionality of the system. An example with the TWOWHEELED showed,
that by requesting an in phase activity of left and right wheel, the behavior changes
qualitatively to straight motion. Nevertheless, the explorative character of the con-
troller is not destroyed. The resulting behaviors are less constrained than in the case
of direct teaching. For example the TWOWHEELED can drive forward or backward
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at its own choice, whereas in the direct teaching setup the direction of driving is
specified externally. It is also interesting that the robot remains sensitive to pertur-
bations and changes its behavior from time to time so that the available environment
is thoroughly scanned. Especially visible is the effectiveness of guidance with the
high-dimensional ARMBAND. A cross-motor teaching with only one connection per
joint leads to a fast and coordinated locomotion behavior. The direction of motion
was rapidly and reliably changed by an altered connection setup. Interestingly the
performance and speed of learning is almost independent of the dimensionality of
the system, at least in the here considered case up to 40 DoF. The discrete cross-
motor connections offers a good way for higher level control structures to direct the
behavior of the robot.

In Chap. 14 we proposed a simple method to guide the self-organizing behavior
using online reward signals. In essence the original time-loop error is multiplied
by a strength factor, obtained from the reward signal. The approach was applied
to the SPHERICAL with two goals, fast motion and curved rolling. In both cases
the performance was significantly increased, although the reinforcement of fast mo-
tion showed only a small effect, because the homeokinetic controller achieves fast
rolling modes already without guidance. When reinforcing curved rolling the results
are distinctive. In this case we find fast spinning modes, which are not observed oth-
erwise. Notably, the exploratory character of the paradigm still remains intact.

Let us shortly compare guided self-organization (GSO) using cross-motor teach-
ings and rewards with other approaches to learning of autonomous robot behavior,
namely evolutionary algorithms [113] and reinforcement learning [166].

We will consider several dimensions along which they are compared: (i) the
achievement of the specified goal, (ii) the learning time, (iii) the flexibility of the
solution, and (iv) the universality of the method. Evolutionary algorithms can for in-
stance optimize the parameters of the controller (e. g. a neural network) and can pos-
sibly achieve the behaviors demonstrated here. There are many impressive results
and systems of similar dynamical complexity have been successfully controlled,
see for example [21, 29, 79, 100, 110] and references in [57]. In high-dimensional
systems, however, identical subcomponents are typically used and long learning
time are required (many generations with many individuals). Here we see the main
strength of our system: As a matter of fact, the desired behaviors are found very fast
even in high-dimensional and dynamically complex systems—we have very fast
online-learning. Another difference is that the finally evolved controller is typically
static, such that it only works in the conditions it was evolved in. Evolutionary al-
gorithms are universal, which is a big plus, but the representation of the problem in
the artificial genome and the definition of genetic operators requires great care, see
e. g. [57, 156, 186]

When considering reinforcement learning (RL) we have to distinguish how the
control is organized. Traditionally RL uses a set of discrete actions, which would be
an intractably large set in the case of the 13-DoF ARMBAND. RL would not yield
a good performance in this case. Since several years there are continuous space RL
algorithms [47] with very powerful variants such as the natural actor-critics [130]
with policy gradient [88] and recently with a path integral approach [170]. These
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allow for a continuous state and action space and are currently the most efficient
RL algorithm for high-dimensional systems [1]. A great application is for instance
the control of a seven DoF robotic arm to hit baseball and table tennis balls appro-
priately [129]. In this applications an initial supervised learning by human demon-
stration was used though. The learning times are still very long in comparison to
the approaches proposed here. However, it is not a fair comparison, since the task is
specified at a different level. RL deals with delayed rewards since it solves the credit
assignment problem and in this way accounts for long-term effects. To the contrary
the reward schema used here (Chap. 14) require online rewards.

In the case of the cross-motor teachings the specification of the desired behavior
is indirect and limited in comparison to the possibilities of reward functions in RL
and the fitness functions in evolutionary algorithms. So RL and evolutionary algo-
rithms are universal and very flexible in the specification of the task whereas the
GSO methods are very restricted in this respect. Also RL was proven to converge to
the optimal solution under certain conditions [166] where with GSO the desired be-
haviors are only partially followed and no guarantee can be given. This is due to the
underlying self-organization, which causes an ongoing exploration around the de-
sired behaviors. Concerning the flexibility, the resulting controllers are highly adap-
tive and can change quickly to new situations, which is one of the major strengths
of the self-organizing system.

To conclude, the guided self-organization methods offer a fast development
of goal-oriented behaviors in high-dimensional continuous robotic systems from
scratch, which cannot be achieved with other learning control systems so far. How-
ever, the implementation of goals is comparably limited. The reward-based guidance
allows any reward signals, but no time delays are tolerated and it is not guaranteed
that the reward is maximized. The cross-motor teaching method is suitable to select
a subset of behaviors, but cannot be generalized to all behaviors. A combination of
both methods is also possible, namely using cross-motor teachings to be very effec-
tive in high-dimensional systems and additionally using rewards to give a fine grain
control over the behavior.

In the current setup the controller and the forward model will forget past behav-
iors, so that there is no long term effect of the reinforcement. Another problem for
practical applications is that we achieve only a tendency to a certain behavior and
cannot guarantee its successful execution. Theses problems can be solved with a
framework that extracts behavioral primitives. This can be done for instance with a
set of competing expert neural networks, see [102]. These expert networks represent
controllers for a certain behavior and because of the closed loop setup and the gen-
eralization property of neural networks they provide often smooth transients into the
specific attractor behaviors. With classical reinforcement learning these behavioral
primitives can be used as discrete actions to solve more complex tasks [102].



P
e
rs

o
n
a
l 
C
o
p
y



P
e
rs

o
n
a
l 
C
o
p
yChapter 15

Algorithmic Implementation

Abstract: This chapter presents a unified algorithm implementing the homeokinetic learn-
ing rules including a number of extensions partly discussed already in earlier chapters of this
book. We continue with some guidelines and tips on how to use the homeokinetic “brain.”
We discuss techniques and special methods to make the self-supervised learning of embod-
ied systems more reliable from the practical point of view. This includes the regularization
procedures for the singularities in the time-loop error and different norms of the error for
the gradient descent. The internal complexity of the controller and the model is extended by
the generalization to multilayer networks. Apart from that the computational complexity of
the learning algorithm will be reduced essentially by easing non-trivial matrix inversions.
This is important for truly autonomous hardware realizations.

The general homeokinetic learning rules, as given in Sect. 5.2, have been mod-
ified and generalized in the applications done so far in order to give them more
flexibility and numerical stability. Particularly important are the specificities of dif-
ferent numbers of motors and sensors, which requires to keep an eye on defining
pseudoinverses. The following sections will describe these modifications to eventu-
ally introduce the universal learning rule, which contains all of these extensions in
a canonical way.

Later in this chapter we will provide some algorithmic details and some recipes
on how to effectively use the homeokinetic controller with different kinds of robots.
Eventually the learning rules for an extended architecture of the controller and
model are derived.

15.1 The sox Algorithm

This section describes an extended version of the homeokinetic controller called
sox algorithm (self-organizing extended) in the simulator. We will proceed in the
following way. We start from the general homeokinetic learning rule and then con-
sider the extensions one by one to obtain finally the new learning rules. Interestingly,
all modifications will reduce to some minor changes in the auxiliary vectors, while
the form of the learning rule stays the same.

261
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In order to avoid too much scrolling we will repeat the original learning rules
as defined in Sect. 5.2 here. In the simulator these are implemented in the sos
algorithm (self-organizing simple or so–simple ;-) with the standard implementation
for the sensorimotor dynamics ψ given by

ψ (x) = M(x,K(x)) = Ag(Cx+h)+b.

The standard time-loop error (TLE) is defined as (5.14)

E = ξ>
1

LL>
ξ = v>v = χ>ξ (15.1)

with the auxiliary vectors v ∈ Rn and χ ∈ Rn given by

v =
1
L

ξ , χ =
1

L>
v (15.2)

L being the Jacobian matrix of ψ . If necessary, the inverses are understood in the
generalized sense, see Sect. 5.G and Sect. 15.4 (p. 277).

The update rule for the parameters of the controller ({C,h}) is given by the
gradient descent on the TLE (5.16) whereas the parameters of the forward model
({A,S,b}) are obtained by gradient descending the prediction error Epred = ξ>ξ .

The learning rules for the forward model are, in the compact matrix notation
see Eqs. (4.5, 4.6),

∆A = εAξ y> (15.3)
∆b = εAξ (15.4)

where εA is the learning rate. The rules for the controller are given by Eqs. (5.25–
5.27), i. e.

∆C = εcµv>−εyx> (15.5)
∆h =−εy (15.6)

y = g(z) being the output of the controller and g(z) = tanh(Cx+h) is to be taken
componentwise with y ∈ Rm and z ∈ Rm. εc is the overall learning rate of the con-
troller and ε the matrix of the channel dependent learning rates given by its matrix
elements as

εi j = 2εcαδi jµiζi (15.7)

with δi j the Kronecker delta (ε is a diagonal matrix). The vectors ζ ∈ Rm and µ ∈
Rm are defined as

µ = G′A>χ , ζ =Cv (15.8)

where G′ is the diagonal matrix defined as G′i j = δi jg′ (zi).
We will now consider the following new ingredients:

1. sensibility,
2. modifications of the forward model,
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3. creativity,
4. harmonizing,
5. pseudoinverse and motor space, and
6. different error types.

Finally we will collect all modifications into the new update rules in Sect. 15.1.2,
which look structurally very similar to the ones above.

15.1.1 Extensions and Corresponding Meta-Parameters

15.1.1.1 Choosing the Sensibility (Meta-Parameter sense)

The sensibility of the controller to perturbations can be adjusted by a meta-param-
eter called sense in the sox algorithm. The effect of this parameter consists in
shifting the working regime of the system. This has been illustrated in the case of
the pitchfork bifurcation and the Neimark-Sacker bifurcation earlier, see the discus-
sion on the effective bifurcation point in Sect. 3.3.4. In those cases, the effect was
clearly defined in terms of the effective bifurcation point. In more complicated sys-
tems the effect of the parameter is less clear but the idea of changing the sensibility
of the robot may serve as a guideline when playing with the parameter.

The integration of the sense parameter was already considered explicitly in
Eq. (5.24) so that we repeat it here only for completeness, see Eq. (15.7). The pa-
rameter weights the strength of the confinement term in Eq. (15.5). Default value is
α = 1. For larger values the sensibility is increased and for smaller values it is de-
creased. Note that for α 6= 1 the controller outputs y sent to the motors of the robot
are scaled roughly by a factor of 1√

α as it can be inferred from the discussion of the
fixed point flow in the 1-D loop, see Sect. 3.3.4. In applications the motor values
may be rescaled if required.

15.1.1.2 Details of the Model (Meta-Parameters causeaware and useS)

For the implementation of the forward model we have two choices that can be se-
lected in the sox algorithm with the flag useS. The most simple implementation
corresponds to Eq. (4.2), i. e.

M(x,y) = Ay+b (15.9)

and is selected with useS=0. The full version with the sensor branch, as introduced
in Sect. 9.2.2, is given by

M(x,y) = Ay+Sx+b (15.10)

and is enabled with useS=1.
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In Chap. 9 different aspects and pitfalls of the simultaneous learning of forward
model and controller have been discussed. Especially if the sensor branch (term Sx)
is included there is an ambiguity in the causality chain since the forward model re-
lates the new sensor values both back to the motor and the previous sensor values.
We argue that it is reasonable for an autonomous agent to have an increased aware-
ness of the causal relation between actions and sensations, see Sect. 9.2.3. This bias
can be controlled with the meta-parameter ρA implemented into the learning rule for
A as

∆A = εAχ ŷ> (15.11)

with
ŷ = y+ρAη and η = G′Cv , (15.12)

the derivation being given in Eq. (9.14).
The new learning rule may be simplified and made more stable by exchanging χ

by ξ in the Eq. (15.11). This can be motivated by writing Eq. (15.11) as

∆A = εAΛξ ŷ>

where Λ =
(
LL>

)−1 is a positive matrix (case of regular L). The effect of this ma-
trix is simply to rescale the size of the gradient step along the eigenvectors of Λ
so that the gradient is always pointing downhill independently of the size of the
(always positive) factors. Thus, the matrix Λ can also be replaced with the unit ma-
trix without inverting the direction of the gradient. In a wider context, the choice of
Λ corresponds to choosing the Riemannian metric for the gradient descent. This is
well known in the theory of the natural gradient, see for instance [4].

In our special case, the scaling factors introduced by Λ may vary over orders of
magnitude due to the g′−1 factors. In the experiments done so far we have realized
that this may give rise to instabilities in the model learning so that we propose to
drop the Λ matrix from the learning rule altogether, leaving us with the new learning
rule for the model matrix A as

∆A = εAξ ŷ> . (15.13)

If we set ρA to zero the original learning rule (15.3) is restored. Note that we keep
the learning rules for the other parameters (S,b) unchanged. The meta-parameter ρA
is implemented in the sox algorithm as causeaware with default value 0.01 if
useS=1 and 0 otherwise.

15.1.1.3 Choosing the Creativity (Meta-Parameter creativity)

Now we want to introduce a meta-parameter that may help in the creation of new
modes and the amplification of latent but very subtle motion patterns. It is called
creativity, which is to be understood in a metaphoric sense and should not be
taken as an attempt to mimic true creativity of humans.
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The experiment with the BARREL, considered in Sect. 8.5, is a good example
to understand the meaning and implementation of this meta-parameter. There the
BARREL was put into the upright position such that all sensor values (the angles of
the axes with the ground) are equal to zero. Thus the activity in the sensorimotor
loop breaks down and only small motor values (defining the position of the weights
on the axes) will be created. Thus the model learning turns A rapidly towards zero
as can be observed in the parameter panels in Video 8.11 and Video 8.13, so that
any sensor noise (which is still present to a small amount) is amplified in the re-
construction process by as much as two orders of magnitude. The idea is then to
use the reconstructed sensor values x̂t = xt + vt as input into the controller. In the
case of the BARREL this had a tremendous effect on the behavior, it created a new
strategy of shaking the robot enabling it to find a mode to escape the impasse situa-
tion. Metaphorically we can say that the robot’s “brain” increased its creativity for
dealing with completely new situations.

This strategy is realized by replacing the input xt into the controller by

x̂t = xt +βvt (15.14)

where the meta-parameter β is introduced in order to control the effect. The reason
for the weighting is that vt may become very large if the response of the sensor to
the motor signal is weak. The meta-parameter β ∈ (0,1) is called creativity
in the sox algorithm and can be used in order to tune the effect depending on the
situation.

The new input to the controller has also a positive effect in more general sit-
uations. Without the creativity term, one often observes that the agent goes
into some dynamical regime which seems to be an attractor in the combined dy-
namics of system and controller parameters. In the high dimensional systems it is
not quite clear why the system does not leave these regions despite the destabiliz-
ing nature of the learning dynamics. For instance, our SNAKE, when lying on the
ground, often comes to a complete rest although the homeokinetic learning actually
destabilizes the “do nothing” behavior. The reason for that is not yet clear but the
creativity term offers an effective way for getting out of the situation. In fact, using
the creativity option proved more effective and resilient than just adding noise
or increasing the learning rate, strategies that in the cases considered were a subtle
deal needing some care.

The success of the procedure is also understood by considering the difference of
the creativity option to the strategy of just adding noise to the sensor values.
If using creativity, the input into the controller contains the shift v instead of a
pure sensor noise. However, v is reconstructed from the prediction error ξ that is not
a pure noise, especially if new behavioral modes are about to start, since then the
forward model is not yet accurate and the prediction error contains systematic com-
ponents of the motion. Feeding this into the controller, as it is done via Eq. (15.14),
helps in many cases to amplify such latent modes.
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15.1.1.4 Enhancing Dynamical Harmony (Meta-Parameter harmony)

Homeokinesis rests essentially on the simultaneity of the dynamics of the physical
system (robot + environment) with that of the internal parameters. The tie between
these two is given by the map ψ , which defines the internal representation of the sen-
sorimotor dynamics. In general, there is a large complexity gap between ψ and the
true world dynamics, which leads to vastly different characteristics of the prediction
error ξ as a function of the behavior.

In fact there are two extreme attitudes in viewing the role of the error ξ . On the
one hand one stipulates that the model captures all knowable dependencies on the
behavior, i. e. the derivative

∂
∂ p

ξt+1 ≈ 0 (15.15)

yielding the learning rule, used so far (5.16),

∆ pt = εχ>
∂L
∂ pt

v

where p ∈ R1 is any of the parameters of the controller ({C,h}). In this interpre-
tation, any systematic dependence on p is already contained in ψ . The term ξ is
considered to be more of an erratic nature so that its derivative will average out over
time.

The other extreme is given by the case that the transition from xt to xt+1 is cap-
tured only very qualitatively by ψ so that the derivative of ξ is essential. In that
case, the difference between internal and external dynamics is vast, harmony be-
tween them is far away.

Then, instead of trying to improve ψ (what one still is up to, anyway) we can try
to modify control in such a way that the controller learns better to produce actions
that lead to predictable (under the present model) consequences and thus to a better
agreement with the events going on in the world. This can be achieved by consid-
ering the new sensor values xt+1 as given from outside like in supervised learning.
Then, instead of Eq. (15.15) we use

∂
∂ p

ξt+1 =
∂

∂ p
(xt+1−ψ (xt)) =−

∂
∂ p

ψ (xt) . (15.16)

In this way, the controller is driven towards behaviors which are more in agreement
with what is known internally so that the harmony between internal and external
world is increased. Writing the error as E = χ>ξ (15.1) and using the product rule
we immediately see that the inclusion of Eq. (15.16) yields

1
εc

∆ p = χ>
∂L
∂ p

v+χ>
∂

∂ p
ψ (x) . (15.17)

Interestingly, in our specific setting of Sect. 5.2.2 (p. 85) we can integrate this into
the update rules for the controller parameters by introducing the auxiliary vector
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v̂ = v+ γhx (15.18)

as

∆C = εcµ v̂>−εyx> (15.19)
∆h = εcγhµ−εiyi . (15.20)

The meta-parameters γh ≥ 0 controls the strength of the additional term. For sta-
bility reasons it is necessary to choose γh � 1. In the learning rule for C the only
difference to the original expressions Eq. (15.5) consists in replacing v→ v̂. In the
sox algorithm this meta-parameter is called harmony, which is 0 by default.

Stability Issues
One of the essential features of homeokinetic learning, namely the mixing of time
scales for learning and behaving, requires some precautions in using this rule. The
point is that the learning rates are kept at or at least close to the critical value where
the time discrete gradient step swaps from descent to ascent leading to a runaway
of the parameters, see Sect. 15.B for details. The new term v̂ (15.18) combines two
terms of vastly differing size: v is often very small (since it is the error term) while
x is of the order of 1. As a consequence, we had to introduce an additional factor
γh� 1.

In practical applications one must be a little careful when using this option, not
only because of the different magnitudes of x and v but also due to the fact that the
forward model can be far away from reality. In this case, obviously the behavior
should better not be adapted to converge towards the model dynamics. Actually, it
is difficult to give a formal description how and when to enable this extension. Often
it helps to get more rich but still body inspired behaviors, but in extreme cases one
obtains instead boring behaviors or a runaway of the parameters of the controller.
The latter case is a real danger in this process since the harmony term may heavily
interfere with the actual dynamics of the homeokinetic learning. So, when using
the term one should monitor the parameter dynamics and turn γh down as soon as
the runaway threatens to start. It is not very difficult to get some feeling for riding
this horse and it is rewarding since by the parameter control one can influence the
“character” of the developing system to some extent.

15.1.1.5 Choosing the Generalized Pseudoinverse (Flag pseudo)

Besides these directly visible modifications of the learning rules we can look at the
matrix inversion of L featuring in χ and v. There is some freedom in the type of
pseudoinverse which may generally be chosen as

L+
PQ = Q

1
PLQ

P . (15.21)
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Later, a detailed presentation of the matter is given in Sect. 15.4 (p. 277).
The sox algorithm in the simulator offers several possibilities that can be used

in particular if m < n (more sensors than motors):

a) P = A>, Q =C> is the normal (sensor space) case enabled by pseudo=1,
b) P = A>, Q = A is the motor space version as given in Sect. 15.6 selected with

pseudo=2, and
c) P =C, Q = A is a further variant enabled with pseudo=3.

In contrast to pseudo=0, where the normal Moore-Penrose inverse of L is used, all
variants (a-c) decrease the size of the inversion to an m×m matrix. Sect. 15.4.1 dis-
cusses the consequences of the different options in a simple example corresponding
to one motor and many sensors. It turns out that in the case of more sensors than
motors (as happens in many realistic situations, the motor-space approaches (b) and
(c) are preferable. The flag pseudo can be switched during runtime.

15.1.1.6 Choosing the Error Type

In the definition of the TLE the Euclidean norm was used to determine the size of the
reconstruction error v. The quantity v may change over orders of magnitude, since
it is obtained by the inverse of L. Especially in high-dimensional systems, the robot
may get stuck in some impasse or has ridden itself into some entanglement from
which it can not so simply escape. In these cases, both sensor and motor values
are constant so that the forward model after a very short time learns these constant
correlations and the prediction error ξ goes to zero and so does the reconstruction
error v.

In practice it often helps to shake the robot mechanically so that the sudden inflow
of new sensor values leads to an increase in the error ξ . Another way is waiting (and
possibly adding some sensor noise) until the deprivation effect, Sect. 9.1, together
with creativity, see the Sect. 15.1.1.3, may lead to a drastic increase of the TLE by
the inversion.

In these and many other cases, the drastic decrease of the errors may lead to
prohibitively long periods of stagnation on the one hand, and to a destabilization
of the learning dynamics (due to the overshooting effect of the gradient dynam-
ics, see Sect. 15.B) on the other hand. We have tested a large number of adaption
strategies for the learning rate ε for both model and controller. The most robust
and effective one turned out to be a different norm by using instead of E = v>v
variants like Esqrt =

√
E or E log = logE. The sox algorithm contains a flag to

switch between them with the flags errortype=0,1,2 corresponding to the Eu-
clidean (0), square root (1), or the logarithmic norm (2).

The implementation is rather straightforward since we can write

∂Esqrt

∂ p
=

1
2
√

E
∂E
∂ p

and
∂E log

∂ p
=

1
E

∂E
∂ p

, (15.22)

such that the different norms are realized by a variable learning rate factor.
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Noteworthy are the following consequences of the different norms on the be-
havior. Both non-linear norms increase the learning speed in low error conditions
and decrease it for high errors. The differences between the situations are reduced
maximally by the logarithmic norm and less strongly by the square root norm. This
implies that the difference in the life time of behaviors is less dependent on their
predictability.

15.1.1.7 Numerical Tricks

Before putting the extensions together, let us briefly introduce some numerical tricks
we are using in order to improve the stability of the algorithm.

Restricting the Update (Clipping)
If the learning rate is chosen too high in a particular situation or the Jacobian ma-
trix comes close to a singular point, there is still an ultimate measure for avoiding
a runaway of the parameters. The most simple solution is to restrict the size of the
parameter update term componentwise. We use a constant clipping size of 0.1 for
the model parameters and 0.05 or less for the controller parameters. As a conse-
quence the parameters cannot change arbitrarily fast, but still fast enough to follow
behavioral changes. For instance a change in value from 1 to −1 would require 20
or 40 steps, which is below 1 sec in our applications.

Dealing with Singular Denominators
In the algorithm, inverses of matrices are either done as Moore-Penrose pseudoin-
verses (Sect. 5.G) or in the sense of generalized pseudoinverses (Sect. 15.4). The
latter case is interesting, because the inverted matrices are not regularized. How-
ever, the maximum dimension that can occur is the one given by the number of
motors (or the minimum number of neurons in an intermediate layer of the network
ψ in the multilayer case described in Sect. 15.3). Given the structure of the TLE
landscape with singularities corresponding to the null space of L, the learning dy-
namics drives the matrices away from the peaks in the error landscape caused by
small eigenvalues in the matrices, see for instance the discussion in Sect. 9.1.3 for
more details. Hence, we may in general expect that the involved matrices are invert-
ible. We have nevertheless introduced a strategy called secureInverse which
checks the matrices for regularity and uses the regularized Moore-Penrose inverse
if the test fails.

15.1.2 Putting it Together — The Universal Learning Rules

Collecting the results of the previous modifications leads to the new learning rules
implemented in the simulator in the sox algorithm. The model parameters are up-
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dated according to

∆A = εAξ ŷ> (15.23)

∆S = εAξ x> (15.24)
∆b = εAξ . (15.25)

The learning rules for the controller are

∆C = εcµ v̂>−εyx> (15.26)
∆h = εcγhµ−εy (15.27)

where the diagonal matrix of channel depending learning rates is (tanh case)

εi j = 2εcαδi jµiζi .

The definitions of the auxiliary vector remain unchanged as

v = L+ξ , χ = L+>v, (15.28)

µ = G′A>χ, ζ =Cv, (15.29)
(15.30)

where G′i j = δi jg′ (zi) and g(z) = tanh(z). The controller reads now

y = g(z) , z =C (x+βv)+h, (15.31)

and the modified shift and motor values are defined as

v̂ = v+ γhx, ŷ = y+ρAη (15.32)

with η = G′Cv. Additionally all synaptic weights (Eqs. (15.23–15.27)) are also sub-
ject to a small damping, i. e. for p ∈ {A,S,b,C,h} we have

∆ p = · · ·− γd p. (15.33)

In comparison to the original learning rules of Sect. 5.2 only small modifications
have been necessary to implement the extensions. These modifications are included
into the learning rules in a systematic way such that they can be easily general-
ized to the case of multilayer networks for both controller and model, considered in
Sect. 15.3.

All meta-parameters with their respective ranges are listed in Table 15.1. By
choosing these parameters appropriately, one may tune the “character” of the playful
machine to a certain extend. Some guidelines for choosing them are given in the
following section.
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Table 15.1: Meta-parameters of the sox algorithm.

symbol meta-parameter typical range default description
εc epsC 0 – 1 0.1 Sect. 15.2.3
εA epsA 0 – 1 0.1 Sect. 15.2.3
γh harmony 0 – 0.1 0.01 Sect. 15.1.1.4
β creativity 0 – 1 0.1 Sect. 15.1.1.3
α sense 0.1 – 5 1 Sect. 15.1.1.1
ρA causeaware 0 – 1 0 Sect. 15.1.1.2
γd damping 0 – 10−4 10−5 Sect. 15.1.2

pseudo {0,1,2,3} 0 Sect. 15.1.1.5
errortype {0,1,2} 0 Sect. 15.1.1.6

15.2 Cookbook for Playful Machines

In this section we want to give some short guidelines and recipes for using the
homeokinetic “brain” in robot control. A certain universality is one of the advan-
tages of our approach. The ambition is that the controller can be connected to any
robotic system, letting behaviors develop in a kind of free play. This has been tested
in many practical cases so far and seen to work fine if some basic conditions are
met. For instance the sensors and motors should “speak comparable languages” and
the body has to provide enough feedback in its sensory response to the actions of
the controller.

15.2.1 Type of Robots — Mechanical Setup

Let us first characterize again the types of robots suitable best for homeokinetic
control. Good robots for behavioral self-organization are compliantly engineered
machines with strong embodiment effects. Compliance is understood in the way that
actions are not perfectly executed due to the influences of external forces and intra-
body couplings, see the ECCEROBOT example in Chap. 1. In this way the current
mode of behavior influences significantly the response of the system to the motor
commands. In our virtual robots, compliance is often a direct result of underactuated
control, realized by either weak forces or by the presence of several to many passive
degrees of freedom (like in the SLINGING SNAKE). In detail we have to consider
the following.

Underactuatedness: The forces of a single actuator are not sufficient to move
the body without the cooperation of the other degrees of freedom. This implies that
whole body motions require a coordination of degrees of freedom. Once cooperation
has started, as a side effect the control costs1 may be significantly lower in the
collective modes of the robot, which we hope to excite by homeokinetic control.

1 The control cost is meant in terms of required internal complexity of the control structures.
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Sensors and Motors: Sensors should be installed that measure the consequences
of the actions in a more or less direct way. Typical examples are proprioceptive
sensors like the joint angle sensors or the wheel velocity sensors. We found that
exteroceptive sensors are also suitable, if the quantity they measure is modulated
by the actions in some systematic way. For example infrared sensors allow a better
adaption to the environment (Sects. 8.4 and 8.2.4). An interesting option is also to
extend the body virtually by the infrared sensors, see Sect. 3.5. Acceleration sensors
can be used nicely if a change in body pose is expected and desired (Sects. 8.1 and
8.5.2). Motor current sensors provide a very good feedback on the physical load
depending on the interaction with the environment, see Sect. 8.1, but they require
some preprocessing as discussed below.

In any concrete case sensors either are to be selected according to the motors or
have to be adapted to the control of the latter. As a rule of thumb, motor signals and
sensor readings should relate to the same physical property. Avoid for instance to
measure the velocity of some mechanical part if it is actuated in a position control
setting. However, sometimes quite obscure combinations yield surprisingly good
results, e. g. current sensors and velocity/voltage control, see Sect. 8.1.

Preprocessing and Noise: Typically no preprocessing of the sensor values is
required. However, it is advisable to have the sensor values roughly in the between
−1 and 1. The scaling is not strictly required, but allows to use standard learning
rates and ensures a similar integration of different sensors. Neither is a zero-mean
of the values necessary, for instance our infrared sensors provide values in the range
[0,1]. Nevertheless, there are cases where a preprocessing beyond simple scaling is
required, for instance when current sensors are used. The current is always positive
regardless of whether the motor is turning clockwise or counterclockwise, which
cannot be handled by our pseudo-linear control structure. A simple remedy is to
multiply the sensor values with the sign of the motor values, as done in Sect. 8.1.1.

The sensor noise is an important aspect of the homeokinetic approach. If there is
absolutely no noise, then the system will possibly not start the sensitization process
or later on might get stuck in metastable configurations for a very long time. Hence
it is often helpful to add a small artificial sensor noise to the raw sensor signals.
With our simulated sensors we typically add uniform white noise with the strength
between 0.01 and 0.1. It is important to stress that adding (weak) sensor noise is
totally different from choosing random actions.

15.2.2 Initialization Procedures — Motor Babbling

Once the appropriate sensors and motors are selected, the success still depends to
some extent on the initialization of both the controller and the forward model. In
the proprioceptive sensor case, we always initialize both C and A with the scaled
unit matrices. This is only valid if the sensor-motor configuration is also in this one-
to-one correspondence. With more general sensors the unit matrix may be totally
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wrong since the sensor and motor channels are perhaps permuted or the “dark side”
of the configuration space is reached, see the discussion in Sect. 5.1.4 (p. 81).

We have implemented in the simulator a general initialization procedure in order
to get a first understanding of the sensor motor relations by sending periodic signals
yext

t of varying frequencies and phase relations to the motors. Optionally the robot is
suspended in the air during this phase, so that it can move its different parts freely.
The motor values yext

t and the incoming sensor values are then used to

1. train the controller network with vector xt of sensor values as input and yext
t as

target output and
2. learn the forward model with (xt ,yext

t ) as inputs and xt+1 as target output.

After sufficiently many steps the initialization phase should be stopped, continu-
ing with homeokinetic learning as usual. When working with hardware robots, this
procedure is particularly helpful since sensors and motors can be connected arbi-
trarily to the “brain” and may even be of widely different nature.

15.2.3 Choosing the Meta-Parameters

At first glance it seems that there is a vast amount of meta-parameters to tune, but
in practice only few meta-parameters have to be selected, the rest being optional or
kept at their default values. The most important meta-parameters are the learning
rates (εA,εc), the type of the internal model, and of the pseudoinverse. If the system
has more sensors than motors use pseudo=2 (or 3). If the world has a dynamics of
its own influencing the prediction of the next sensor values, use the extended model
with useS=1 and set causeaware=0.01 or higher.

Now to the learning rates: We typically keep both of them identical and start with
0.1. In order to select the meta-parameters appropriately it is helpful to observe the
parameter dynamics online. The LPZROBOTS software package comes with tools to
do that, see Sect. 16.4.5, which can be also used for studies without the simulation
environment. The speed by which the parameter values change is a good indicator
for the right learning rate and the error type. On the one hand, the learning rate is
too low if the parameters do not visibly change. On the other hand, the learning
rate is too high if the parameters are seen to jump heavily. In particular, segments
of a steep linear increase in the parameter plots are an indication of heavy clipping
(Sect. 15.1.1.7) happening if the learning rate is exceedingly large. In these cases
an immediate shrinking of the learning rate by at least an order of magnitude is
mandatory.

An indication to choose the square root or logarithmic error type is given if the
robot shows long periods of inactivity followed by short highly active ones accom-
panied by a very strong parameter variations. The square root or logarithmic error
norm reduces the difference in learning speed between active and inactive situations,
such that the choice of the learning rate is easier, see also Sect. 15.1.1.6. We found
the use of the latter error types especially helpful in high-dimensional systems.
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15.2.4 Parameter Runaways — The Dark Side

The stability of the learning algorithm depends very much on the embodiment, the
parameter selection, and above all on the physical situation the robot is in. As long
as the robot can execute its motor commands relatively freely, there is no problem
with the learning dynamics if the parameters are chosen not too wrong. If, however,
the robot or parts of it are blocked for a long time or its motion is apparently not
controlled by its own actions, the homeokinetic learning may drive the parameters
into pathological configurations hindering the robot to return to a “normal” behavior
even if the constraints are lifted, see for instance Fig. 8.15 in Sect. 8.3. The most
problematic configuration arises if the Jacobian matrix develops eigenvalues with
negative real parts. This corresponds to an inversion in sign of the sensor values (in
the direction of the respective eigenvector) in each time step. The same is true for
the motor commands so that the robot might be driven to self-destruction. This is
why we call this region the “dark side” in funny terms, see also Sect. 5.1.4 (p. 81).

Actually, the TLE has a singularity at the zeros of the eigenvalues, so that—once
at the right side—the learning dynamics should keep us way from this point and
crossing the line should not be possible. However, through high frequency oscilla-
tions the system can get there via the complex plane without having to overcome
the singularity. Another scenario is a potential collapse of the forward model, e. g. if
actuated degrees are blocked, driving eigenvalues of A towards zero such that small
fluctuations in the matrix elements can bring us to the negative side.

How to prevent it? Use the initialization procedure above to make sure you start at
the right side. Reduce the learning rates and/or use a different error norm. Make sure
that you use causeaware>0 if the model matrix A is seen to collapse (especially
if the extended model is used).

15.3 Increasing Internal Complexity — The soml Algorithm

The extreme simplicity of both controller and forward model is a key feature of
the homeokinetic approach. The idea is that the complexity is not in the internal
structures but in the physics of the body embedded into the world; and all we have
to do is to find a sensible way of feeding energy into the system so that the most
fundamental modes are getting excited. This helps us to find truly emerging modes,
putting as few as possible into the behavior from outside. The flip side of the coin
is the transient nature of the behaviors. A typical case is the humanoid in the pit,
see Sect. 10.5. Often the emergence of climbing patterns is observed, which may
repeat several times and even shape out into a sequence of elementary motions so
that seemingly the robot develops a strategy for escaping from the pit. After few
repetitions, however, the climbing mode fades away and the robot seems to become
“interested” in new motions patterns. One interpretation is that longer sequences of
elementary movements can not be kept “alive” by the oversimplified brain structure.
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Having said that, increasing the internal complexity might help lifting the sys-
tem to a higher complexity level. Besides increasing the structural complexity of
the “brain,” an effect is already expected by the additional parameters introduced in
this way into the controller. The effect of additional parameters has been demon-
strated already by the introduction of the bias (Sects. 6.3 and 7.3). The bias dynam-
ics becomes a constitutive component of the behavior generation and the interplay
between the bias and the physical dynamics has been shown to be the reason for
the emerging cooperation under decentralized control (Sect. 6.4.2) and many other
effects. We want to continue this path by increasing the number of neurons and lay-
ers in the controller network. It will be sufficient to introduce the method by simply
adding one hidden layer into the controller network. The extension of the forward
model will be briefly discussed at the end of this section. In the simulator the ex-
tended setting is implemented in the soml algorithm, where an arbitrary number of
layers for the forward model and the controller can be used.

15.3.1 Controller Architecture

We have introduced in Sect. 3.6.3 (p. 52) the general structure of a feed-forward
network. In the case of a single hidden layer this reads

y(k)i = g

(
∑

j

(
C(k)

i j y(k−1)
j

)
+h(k)i

)
, for k = 1,2 , (15.34)

where y(0) = x is the input, y(1) the output vector of the hidden layer, and y(2) the
output of the network. The latter is just the output of the controller y = K (x). We
may write this more compactly as

y = g
(

C(2)g
(

C(1)x+h(1)
)
+h(2)

)
(15.35)

assuming for simplicity of presentation that all neuron have the same activation
function g(z), which is taken componentwise. We restrict ourselves here to the tanh
function, thus gi (z) = tanh(zi).

15.3.2 Learning Rule

Keeping the simple forward model as given in Eq. 4.2 (p. 65) we obtain

ψ (x) = Ay+Sx+b

= Ag
(

C(2)g
(

C(1)x+h(1)
)
+h(2)

)
+Sx+b . (15.36)
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The learning rules from gradient descending the TLE are given for general ψ by
(5.16)

∆ p =−εcχ>
∂L
∂ p

v . (15.37)

The Jacobian matrix L of ψ is, based on Eq. (15.35),

L = AG′
(

z(2)
)

C(2)G′
(

z(1)
)

C(1)+S (15.38)

where
z(l) =C(l)y(l−1)+h(l),

G′i j = δi jg′i, and y(0) = x.
In Sect. 15.D we derive, starting from the general rule Eq. (15.37), the following

update rules for the matrices of the controller network:

∆C(l) = εcµ(l) v(l−1)>−ε(l)y(l)y(l−1)> (15.39)

∆h(l) =−εy(l) (15.40)

where
µ(2) = G′(2)A>χ , µ(1) = G′(1)C>2 µ(2) (15.41)

and
v(1) = G′(1)C(1)v(0), v(0) = v = L+ξ (15.42)

so that v(1) is obtained from the reconstruction error v by forward propagation the
latter to the next layer of neurons.

The matrix ε of the channel dependent learning rate is given by its matrix ele-
ments as

ε
(l)
i j = εcδi jµ

(l)
i ζ (l)

i , (15.43)

where ζ (l) is obtained from v(l−1) as

ζ (1) =C(1)v(0), ζ (2) =C(2)v(1) . (15.44)

This can again be modified by introducing the sense meta-parameter (α) in order
to control the working regime of the system.

The rules can be interpreted as if each layer has its inputs and outputs from and
into the world. Once the vectors v and χ are known, all quantities are obtained by
propagating them forward or backward, respectively, to the appropriate inputs or
outputs of the synapses in each layer. Given these auxiliary quantities, the learning
rules look identical for all layers. A pseudocode is given in the appendix Sect. 15.D.

Increasing the complexity of the forward model is straightforward. Consider any
function M(x,y) for the model, we can use the rule stated above putting

A =
∂
∂y

M (x,y) (15.45)
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S =
∂
∂x

M (x,y) . (15.46)

Note that both quantities may be state and time dependent, for instance in non-linear
and recurrent networks. In order to maintain an appropriate mapping from motors
to sensors (motor branch) in the forward model the methods introduced in Sect. 9.2
should be considered.

15.4 Generalized Pseudoinverse∗

In the derivation of the learning rules, Sects. 5.2 and 15.1.2, we did not yet explic-
itly discuss how the matrix inversion is to be done in general. It turns out that we
have different choices which have rather important implications on the parameter
dynamics.

The learning rules given so far are still open to interpretation if the inverse of
L does not exist, like in the case that the sensors outnumber the motors2. The usual
way is to use the well known Moore-Penrose pseudoinverses, see Sect. 5.G for an
introduction. However, we want to introduce a generalization of that concept by way
of a certain “sandwiching” technique, defining the inverse of a square matrix L as

L+
PQ = Q

1
PLQ

P (15.47)

choosing the matrices P and Q appropriately so that the inversion of PLQ becomes
possible in the classical sense. This is trivial if all matrices P, Q, L are of full rank
so that automatically L+

PQ = L−1. In all other cases the matrices P and Q have to be
chosen appropriately so that the inverse of PLQ exists.

The replacement of the (possibly nonexistent) inverses in Eq. (5.15) by the gen-
eralized pseudoinverses deserves still justification. In fact, we did not derive so far
the learning rules of Sect. 5.2 if using the generalized pseudoinverses. This is done
in the Appendix, see Sect. 15.A, where we show in relevant special cases that the
generalized pseudoinverses can well be used in the learning rules even if the matri-
ces P and Q are depending on the parameters of the system. This result is a little
astonishing but very helpful since it allows to introduce various pseudoinverses in
the learning rules without having to modify the structure of the rule itself. Instead,
all one has to do is to redefine the vector v and χ (Eqs. (5.15, 15.2)) as

v = L+
PQξ , χ =

(
L+

PQ

)>
v . (15.48)

By way of example, in our standard case with L = AG′C, we choose P = A> and
Q =C> so that

2 Considered in the case with the simple forward model where L = AG′C (5.12).
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L+
A>C> =C>

1
A>AG′CC>

A> =C>
1

CC>
1
G′

1
A>A

A> (15.49)

(assuming the inverses of CC>and A>A exist3, as we may in our applications). Obvi-
ously this corresponds to a strategy of defining the pseudoinverse of L step by step
like

v = L+
A>C>ξ =C>

1
CC>

1
G′

η =C+ζ (15.50)

χ =
1
G′

A+> 1
CC>

ζ (15.51)

with the Moore-Penrose left and right pseudoinverses A+ and C+, respectively, and
the auxiliary vectors η = A+ξ and ζ =G′−1η . The vectors arise from the projection
of the prediction error ξ back, in a first step, to the controller outputs (η) and, in a
second step, to the membrane potential of the controller neurons (ζ ).

This scheme can be carried over immediately to the case of more complicated
networks, see Eq. (15.38). It simply amounts to taking the pseudoinverse of each
layer in the network structure and do the inversion by taking the (minimal di-
mension) pseudoinverse. In this way, the complexity of the matrix inversions is
always given by the number of motors and/or the minimal number of neurons
in the two layers connected by a matrix C(l) in the case of multilayer networks,
see eqneqn:SensMotLoop:ffn1 in Sect. 3.6.

However, the choice of the sandwiching process in Eq. (15.49) is only one of
several that may seem appropriate. For instance we may also use the pseudoinverse
as

L+
CA = A

1
CLA

C = A
1

RG′R
C (15.52)

where R =CA is an m×m matrix of rank 1. Ignoring the non-linearities this matrix
maps the motor values to the next (in time) motor values and it is close to the unit
matrix in many applications. This point will be used for an approximate learning
rule avoiding matrix inversions altogether, see Sect. 15.5.1 below. Another form
that will be identified with the motor-space version of the controller in Sect. 15.6 is
given by

L+
A>A = A

1
A>LA

A> = A
1

A>AG′R
A> . (15.53)

All of these variants are available in the sox algorithm, see Sect. 15.6. Let us now
consider an analytical example where we will find out that the different pseudoin-
verses lead to qualitatively different dynamics.

3 Note that the learning dynamics drives the matrices away from the singularities.
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15.4.1 Examples

The freedom in defining the pseudoinverses and the influence on the learning dy-
namics can be demonstrated clearly in the extreme case of only a single motor
(m = 1) but n > 1 sensors. Now, C ∈ R1×n is a row, A ∈ Rn×1 is a column matrix,
and the Jacobian matrix L ∈ Rn×n of ψ (x) = Ay = Ag(Cx+h) is of course singu-
lar. We will study two different ways of choosing the pseudoinverse in the general
learning rules given by Eq. (5.22) or Eq. (15.5). We start with Eq. (15.49) and put,
without restriction of generality, ‖A‖= 1 and ‖C‖= c and find4

v = L+ξ =
‖ξ‖
c2g′

cos
(

A>,ξ
)

C>

µ = g′A>χ = g′A>A
1

c2g′
Cv =

‖ξ‖
c2g′2

cos
(

A>,ξ
)

so that both µ and ζ = Cv = c‖v‖ are scalars. Absorbing common factors into the
learning rate ε the learning rule is now (using x = Ag by assuming ξ → 0)

1
ε

∆C =C−2c2g2A> (15.54)

so that the update is a combination of the row vectors C and A>. The dynamics is
stationary if C = uA> with a certain value of u determined by the fixed point of the
state x.

When using the pseudoinverse given by Eq. (15.52) we get instead v ∝ A, χ ∝
C>, and Cv = c‖v‖cos(C,A) so that

1
ε

∆C =
(
1−2ccos(C,A)g2)A> . (15.55)

Actually the same update rule is obtained if Eq. (15.53) is used for the pseudoin-
verse, even though the intermediate steps and the common factors are different. In
both cases the update is solely in the direction of A> so that it is completely defined
by the latter. With a small decay term, the C dynamics has a stable equilibrium if
C ∝ A>, i. e. ci ∝ ai meaning that sensor channels strongly responding to the motor
signals are also strongly contributing to the motor commands.

Discussion
At first glance both rules have the same stationary situation, however, when con-
sidering the stability of the fixed point we realize that Eq. (15.55) is stable whereas
Eq. (15.54) is unstable in the stationary state. This can be seen from a linear stabil-
ity analysis of Eq. (15.54). By way of example we consider Eq. (15.54) for n = 2
at the stationary point where C = (c1,c2) = u(a1,a2) with u = 2c2g2. Considering

4 cos(a,b) denotes the cosine of the angle enclosed by the vectors a and b. It is defined as
cos(a,b) = 〈a,b〉

‖a‖‖b‖ .
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a perturbation δC = (δc1,δc2) taken to be orthogonal to C so that C>δC = 0 we
find that the norm ‖C+δC‖2 = c2 +O

(
‖δC‖2

)
so that in leading order of ‖δC‖

Eq. (15.54) becomes
∆δC = εδC+O

(
‖δC‖2

)
meaning that the perturbation δC moving C away from the equilibrium point is get-
ting amplified. Note, however, that the norm of the C matrix will not diverge since
the length c of the row matrix C is squared in the confinement (second) term. This
point is interesting since it shows how the system manages to become more and
more sensitive without violating the confinement condition that keeps the neurons
out of saturation. The “trick” homeokinetic learning detects is to drive the matrix el-
ements of C to larger values in the direction orthogonal to A so that the postsynaptic
potential z =Cx =CAy (ignoring noise) remains finite.

In numerical simulations we confirmed this result. Assuming the following world
x = Ay+ς with A> = (0.5,0.5). In the first case Eq. (15.49) (pseudo=1 in sox al-
gorithm) the C vector develops to C = (d,−d) with d ∼ 10, the exact value depends
on the noise strength and the sign depends on the initial conditions. With the second
or third version, Eqs. (15.52, 15.53) (param=3,2), we obtain indeed C = (d,d)
with d ∼ 1.2 if both channels have the same noise strength. Otherwise the lower
the noise the higher the factor and vice-versa. This is different from the case of in-
dependent channels, where the channel with more noise gets stronger coupled, see
Sect. 5.3.2.

The third variant (15.53), also called motor-space version, seems to be more
appropriate in the case with more sensors than motors. Note, however, that during
learning the matrix A may change a lot due to the fact that the behavior changes and
the way A reflects the correlations between motors and sensors is depending on the
modes the system gets in. Thus, this version may give the system more robustness
but is prone to run into dead locks if A is too far from reality. To avoid the latter see
Sect. 15.1.1.2.

15.5 Simplified Algorithms

The broad applicability of the homeokinetic learning algorithms opens many per-
spectives for applications in high dimensional systems and, in particular, in real
robots, giving them a high degree of autonomy. The inversion of the Jacobian ma-
trix is the main obstacle in these goals, also in relating the approach to biological
systems. We are now going to present modifications which either avoid inversion
altogether or make it at least less time consuming. We start by the most radical
simplification of the algorithm.
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15.5.1 Avoiding Matrix Inversion

The inversion of the Jacobian matrix is the major discrepancy from the vision to
develop a method of self-organization and/or self-regulation that is as close as pos-
sible to the biological world. Moreover, the inversion can make trouble when trying
to implement the parameter dynamics in electronic hardware or on low performance
embedded devices. Fortunately, the generalized pseudoinverse technique suggests
an approximation that avoids nontrivial matrix inversions altogether. Consider the
standard model where L = AG′C and use the generalized pseudoinverse as (15.52)

L+ = A
1

CLA
C = A

1
RG′R

C

where R =CA is an m×m matrix, m being the number of motors. In our dynamics

xt+1 = Ayt +ξt+1 = Ag(Cxt +h)+ξt+1 = Ag(Ryt−1 +Cξt +h)+ξt+1

we find, ignoring the bias and the nonlinearity, that yt ≈ Ryt−1. In this way R con-
nects the motor vectors at two subsequent times. With a realistic update rate, the yt
change only slowly so that R is approximately the unit matrix (times some factor due
to the nonlinearity), which is also typically observed in practice. Absorbing factors
into the learning rate, we may approximate

L+ = A
1
G′

C

so that the inversion of L reduces to the trivial problem of inverting the diagonal
matrix G′. Then, in the learning rules the vector v and χ Eqs. (15.2, 15.28) may be
defined as

v = A
1
G′

Cξ and χ =C>
1
G′

A>v,

which is a great simplification reducing the time complexity of the learning rule to
O
(
m2
)

as compared to O
(
m3
)

when really inverting L.

15.5.2 Matrix Inversion by Iteration

Since the inverted matrices are only involved in the vectors v and χ these can be
obtained in a different way. We note at first that v = L>χ so that actually only χ is
to be found. This can be realized iteratively by the update rule

1
ρ

∆ χ =
(

ξ −LL>χ
)
−λ χ (15.56)

where ρ controls the convergence and λ the degree of regularization. Eq. (15.56)
has to be repeated in each time step t until convergence is (essentially) reached.
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Upon convergence we have ∆ χ = 0 so that

χ (λ ) =
1

LL>+λ I
ξ . (15.57)

If L is regular (no eigenvalues equal to zero), we may take the limit of λ → 0 obtain-
ing the desired χ . In general, keeping λ finite yields a regularized solution which is
valid even if L is singular. Note also that

lim
λ→0

L>χ (λ ) = L+ξ

where L+ is the pseudoinverse of L.
Once these vectors are obtained, the update step in the parameter dynamics is re-

alized without any matrix inversion. Otherwise, the latter is not such a big problem
in practical applications as it might seem. Thanks to the generalized pseudoinverse
techniques, the size of the matrices to be inverted has the dimensions of the number
of motors. Thus in our applications with robots of up to 20 independently controlled
motors, the normal inversion is absolutely not time critical on a conventional PC
running the system in real time. However, replacing the inversion task with the iter-
ation procedure reduces the implementation effort and makes it possible to run the
system on an embedded controller board or even realize the system in hardware, for
instance on an FPGA. Practical experiences also show that the relevant part of the χ
vector is varying slowly so that the number of updates of χ can be kept small with
the potential side effect of preventing the system from parameter runaway.

15.6 Motor-Space Approach

In Chap. 5 we introduced the time-loop error (TLE) with single step reconstruction.
In the interaction representation, see Chap. 11, this is extended to arbitrarily many
steps corresponding to the reconstruction of previous sensor values in a larger time
horizon. Here we will discuss an extension to one and a half steps, meaning instead
of reconstructing last sensor values we want to reconstruct previous motor values.
Interestingly this motor-space approach can be implemented solely by choosing the
right pseudoinverse in the normal one-step algorithm, such that this is a nice demon-
stration of the usefulness of the generalized pseudoinverse concept introduced in
Sect. 15.4. It has been observed in many experiments that the motor-space approach
is more suitable for controlling systems with more sensors than motors.
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15.6.1 Reconstructing Previous Motor Values

In the general formulation of the sensorimotor dynamics we can write, using ψ (x)=
M (x,y),

xt+1 = ψ (xt)+ξt+1 = φ (xt ,yt−1,xt−1)+ξt+1 (15.58)

where (ignoring the ξt term)

φ (xt ,yt−1,xt−1) = M (xt ,K (M (xt−1,yt−1))) .

In the motor-space approach we want to reconstruct the motor values (yt−1), which
can be done in different ways, depending on the role x is given in this process.
The most simple way is to keep x unchanged and try the reconstruction by finding
the best estimate yrecon of y, i. e. minimize the distance

∥∥xt+1−φ
(
xt ,yrecon

t−1 ,xt−1
)∥∥

between the predicted (output of φ ) and the true sensor vector xt+1. Following the
arguments of Sect. 5.1.1 we obtain the reconstruction error in motor space as

qt−1 = J−1ξt+1

where

J =
∂

∂yt−1
φ (xt ,yt−1,xt−1)

is the Jacobian matrix of φ with respect to y.
Let us consider our standard setting, Eqs. (4.2, 4.3), where φ (xt ,yt−1,xt−1) =

Ag(CAyt−1 +h)+b so that the Jacobian matrix is

J = AG′CA = AG′R . (15.59)

The advantage of this formulation is that R =CA is an m×m matrix which is favor-
able if the sensors outnumber the motors, so that n > m.

Assuming the m×m matrix AG′R is regular, the TLE in motor space is

E = q>q = ξ>
1

R>G′A>
1

AG′R
ξ

= η>
1

R>G′
1

G′R
η = ζ>

1
RR>

ζ (15.60)

with the auxiliary vectors η = A+ξ (Moore-Penrose left inverse) and ζ = G′−1η .

15.6.2 Learning Rules

Gradient descending the error E yields the explicit learning rules, which stay in
structure the same as in Eqs. (5.22, 5.23)

∆C = εcµv>−εyx> (15.61)
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∆h =−εy (15.62)

but5 with6 µ =
(
RR>

)−1 ζ , q = R>µ , R =CA, and v = Aq = A(CA)−1 ζ . The latter
can be understood as the shift in the sensor values obtained from the motor output
shift q propagated forward by the model matrix A. As before, the channel dependent
learning rate is given in terms of µ and ζ by

εi j = 2εcδi jµiζi . (15.63)

Note that in the case that the matrix A is square and invertible, the only difference is
in the definition of v since then Aq =C−1ζ .

This approach has been extensively tested in [102]. Interestingly, the learning
rules have proven to be more favorable in many situations, in particular produc-
ing more smooth behaviors and stability against parameter runaway. One possible
reason is that, forgetting about the nonlinearities, the matrix R = CA describes the
signal flow of the controller outputs over one time step. With any reasonable behav-
ior, this is essentially a unit matrix (also observed in the majority of experiments) so
that the inversions featuring in µ and v are well behaved. This may not be the case
in the inversion of the C matrix alone, in particular in the m < n case the inversion
is different from using the Moore-Penrose pseudoinverse.

15.6.3 Using the Generalized Pseudoinverse

The motor space approach can be used as a further example for the usefulness of the
generalized pseudoinverse introduced in Sect. 15.4. In fact, the Eqs. (15.61, 15.62)
can be obtained as a special case of the general learning rule (in sensor space) by
defining the inversion of L = AG′C as

L+
A>A = A

1
A>LA

A> (15.64)

5 Derivation: Using χ =
(
JJ>

)−1 ξ , q = J−1ξ , and E = χ>ξ we get

−1
2

∂
∂Ci j

χ>ξ = χ>
∂J

∂Ci j
q = χ>A

∂G′C
∂Ci j

Aq

=
(

G′′A>χ
)

i
(CAq)i x j +

(
G′A>χ

)
i
(Aq) j

=−2µiζiyix j +µiv j

the latter line being obtained for the case that g(z) = tanh(z) and by using

µ = G′A>χ =
1

R>
1
J

ξ =
1

RR>
ζ and ζ = G′−1A−1ξ =CAq .

6 An alternative definition is q = J−1ξ , χ = J>−1q, µ = G′A>χ which makes the correspondence
to the sensor space rules more transparent.
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so that the shift v becomes

v = L+
A>Aξ = A

1
A>LA

A>ξ = A
1

A>AG′CA
A>ξ (15.65)

= A
1

CA
ζ ,

where ζ = G′−1η and η = A+ξ with A+is the Moore-Penrose pseudoinverse. Using
v of Eq. (15.65) in E = v>v yields immediately the motor space rule Eqs. (15.61,
15.62), the only difference being in the fact that all inversions are now directly
obtained in the classical sense (since the denominator now consists of a product
of m×m matrices) whereas above we had to invoke the interpretation of A−1 as
Moore-Penrose inverse. For the implementation in the simulator see Sect. 15.1.1.5.

Appendix 15.A Learning with Generalized Pseudoinverse

In order to justify the use of the sandwiching strategy, introduced in Sect. 15.4, in
the general learning rule, we have to consider

1
2

∂
∂ p

v>v = v>
∂

∂ p
Q

1
PLQ

Pξ .

Let us assume for the moment that Q and P are independent of C so that we are left
with

v>Q
(

∂
∂ p

1
PLQ

)
Pξ =−v>Q

1
PLQ

P
(

∂
∂ p

L
)

Q
1

PLQ
Pξ

=−χ>
(

∂
∂ p

L
)

v

which is the desired result, see Sect. 5.E for hints on the derivative. The general
proof is a little less trivial, but, as a hint, in case that all matrices P, L, and Q are
invertible, the expressions do not depend on P and Q at all so that any explicit
dependency of P and Q on p must cancel out and the above result is recovered.
Fortunately, the canceling takes place also for the most central cases considered
in the algorithm. In particular, consider the generic case L = AG′C (5.12) with the
pseudoinverse chosen as L+

A>C> so that, see Eq. (15.50),

v =C>
1

CC>
ζ =C+ζ . (15.66)

As a fist step, we will now use this form of v and find the derivative of the TLE
E = v>v directly. Introducing the auxiliary vector

µ =
1

CC>
ζ (15.67)
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we find

1
2

∂
∂C

v>v = v>
(

∂
∂C

C>
1

CC>

)
ζ = µv>+ v>C>

(
∂

∂C
1

CC>

)
ζ (15.68)

= µv>− v>C>
1

CC>

(
∂

∂C
CC>

)
1

CC>
ζ

= µv>−µ>
(

∂
∂C

CC>
)

µ

= µv>−µv>−µv>

=−µv>

using

v>C>
1

CC>
=

(
1

CC>
Cv
)>

=

(
1

CC>
CC>

1
CC>

ζ
)>

= µ>

and a>C>b = b>Ca for the derivatives of the C> terms.
This equivalence can not be proven for all forms of the generalized pseudoin-

verse. We propose to deal with the problem in an approximate way by just ignoring
the possible dependencies in the P and Q matrices. This is less troublesome as it
might seem since the update for the parameters is given by the matrix element of
the derivatives of L with respect to the vectors χ and v. Mild changes of these vec-
tors may not reorient the gradient and this is all we need for the gradient descent.
Again, this strategy is exact if the matrices P and Q are invertible.

Appendix 15.B Stability of the Gradient Descent

As mentioned already at several points, the high speed of the parameter dynamics is
an important ingredient of homeokinetic learning. However, the parameter dynamics
is a gradient process so that the learning rate must be controlled appropriately. In
order to demonstrate this point let us consider the most simple case of a quadratic
error function E = ac2 with gradient dynamics

∆c =−εac (15.69)

and solution
ct = κ tc0 (15.70)

with κ = 1−εa meaning monotonous convergence for 0 < κ < 1, convergence with
alternating sign for −1 < κ < 0 and divergence if κ > 1.

In the TLE, the factor a can loosely be associated with the product of the vector
components of µ and v, which may change over orders of magnitude on the time
scale of the behavior. Counteracting this effect would mean to change ε all over
the time. This is unreasonable in a realistic application. Remedies are the different
error norms introduced in Sect. 15.1.1.6 and the following regularization of the non-
linearities.
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15.B.1 Regularization of g′ Terms

The jumping of the error over orders of magnitude is caused essentially by the inver-
sion of the matrices. Actually, since we are using inverses in the generalized sense,
there is no problem from the strict mathematical point of view. However, the gra-
dient descent is (and has to be) performed with a fixed step width ∆ t, such that a
too steep gradient can lead to instabilities, as sketched in Eq. (15.70). In our system,
the problem is that the quantities like µ and v may become very large if one of the
matrices in the denominators is close to being singular. This may well happen with
the G′ matrices, which go to zero if the neurons are in the saturation region.

We will discuss a convenient regularization making the decay of the g′ (z) terms
sufficiently soft in the tails. We propose in particular, in the tanh case, to use the
second order approximation tanh′(z) = 1− z2 +O

(
z4
)

so that

1
g′ (z)

= 1+ z2 +O
(
z4) (15.71)

which is exact for infinitesimally small z but additionally guarantees a soft decay of
the inverse 1/g′ (z) in the tails. A somewhat more realistic approximation is obtained
when approximating g′ in fourth order

1
g′ (z)

= 1+ z2 +
1
3

z4 +O
(

z6
)
. (15.72)

One might argue that the use of such an approximation is inconsistent in view of
the fact that, in order to get Eqs. (15.39, 15.40), the G′ terms in ∂L/∂ p in Eq. (15.37)
have been treated exactly while we use the approximation in the vectors χ , ζ , and
v. We take the attitude that the direction of the gradient is essentially given by the
∂L/∂ p term, whereas the auxiliary vectors play more or less the role of weighting
factors, which are mostly important for the speed of the parameter dynamics in
the different channels. Thus, they may well be relevant for the composed dynamics
(system + parameters) but in generic cases the approximations have been found to
influence the behavior only marginally.

These regularizations can also be circumvented by using the regularized pseu-
doinverses, see Sect. 5.G, such that the sox algorithm does not regularized the g′

terms.

Appendix 15.C Learning Rules for Arbitrary Neuron Types

So far we have given the explicit formula for the parameter dynamics assuming
the activation function of the neurons is tanh. This is well suited for the case of
the single layer controller and with motor activities ranging essentially from −1
to +1. However, this choice may be unfortunate in other applications and also for
the hidden layer neurons in multilayer networks, see Sect. 15.3, as is well known
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from many applications of artificial neural networks. Therefore, we derive here the
changes in the rules for different neuron types. The activation functions matter only
in the derivation of the G′ matrix with matrix elements G′i j = δi jg′i where g= g(Cx+
h). In all cases the Jacobian matrix L is of the form L = . . .G′C . . . so that we have
to consider

a>
(

∂
∂Ci j

G′C
)

b =
(
G′′a

)
i (Cb)i x j +

(
G′a
)

i b j (15.73)

(see also Sect. 5.F). In order to write this in terms of the two auxiliary vectors µ =
G′a and ζ =Cb, we introduce the matrix ε of the channel dependent learning rates
by its matrix elements

εi j =−εcδi j
g′′i

gig′i
µiζi (15.74)

writing y = g(z), so that in matrix notation

a>
∂G′C
∂C

b =−εyx>+µv>

a>
∂G′

∂h
b =−εy . (15.75)

Eq. (15.74) generalizes the tanh case considered in Eqs. (5.24, 5.27). The α param-
eter can be introduced here as well.

In the case g(z) = tanh(z) the fraction in Eq. (15.74) is just−2 so that the original
expressions are reobtained. In the case of a Fermi function

g(z) =
1

1+ e−z (15.76)

we have g′i = (1−gi)gi and

− g′′ (z)
g′ (z)g(z)

= 2− 1
g(z)

= 1− e−z (15.77)

which changes sign at z = 0 so that the term may be interpreted as a Hebbian or
anti-Hebbian learning term depending on the state z of the neuron.

In the present version of the algorithms, the tanh and the Fermi function are
explicitly available as neuron activation functions.

Appendix 15.D Derivation of the Multilayer Learning Rule

In this section we will derive the learning rules for the multilayer controller intro-
duced in Sect. 15.3 (p. 274). The canonical learning rules (Sect. 5.2) are expressed
in terms of the vectors v and χ
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v = L+ξ and χ = L+>v (15.78)

where L+ is a Moore-Penrose pseudoinverse or a generalized pseudoinverse L+ =
Q(PLQ)−1 P, see Sects. 5.G and 15.4. The only difference between the single layer
and the multilayer case is the definition of L, see Eq. (15.38). We have to consider
the general update for a parameter p (5.16) given by χ> ∂L

∂ p v where (two-layer case
for simplicity)

L = AG′2C(2)G′1C(1) . (15.79)

Let us introduce
µ(2) = G′2A>χ

obtained by backpropagating χ back to inside of the upper layer and

v(1) = G′1C(1)v(0)

obtained by forward propagating v = v(0) to the inputs of the upper layer. Moreover,
we introduce

ζ (2) =C(2)v(1) .

Consider first the derivative 7 w. r. t. C(2)

χ>
∂L

∂C(2)
i j

v = χ>A

 ∂

∂C(2)
i j

G′2C(2)

G′1C(1)v (15.80)

=
(

G′2A>χ
)

i

(
G′1C(1)v

)
j
+
(

G′′2A>χ
)

i

(
C(2)G′1C(1)v

)
i
y(1)j

= µ(2)
i v(1)j +

(
G′′2G′−1

2 µ(2)
)

i
ζ (2)

i y(1)j

= µ(2)
i v(1)j −ε

(2)
i y(2)i y(1)j

where

ε
(2)
i =−εc

g(2)′′i

g′(2)i g(2)i

µ(2)
i ζ (2)

i .

This is valid for any neuron activation function. In case that g is given by the tanh
function, we have in particular

ε
(2)
i = 2εcµ(2)

i ζ (2)
i

as it should be.

7 Taking the derivatives follows the general scheme outlined by Eq. (15.73).
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Analogously, introducing

µ(1) = G′1C(2)>G′2A>χ

we obtain

χ>
∂L

∂C(1)
i j

v = χ>AG′2C(2)

 ∂

∂C(1)
i j

G′1C(1)

v

=
(

G′1C(2)>G′2A>χ
)

i
v j +

(
G′′1C(2)>G′2A>χ

)
i

(
C(1)v

)
i
x j

= µ(1)
i v(0)j +

(
G′′1G′−1

1 µ(1)
)

i
ζ (1)

i x j

= µ(1)
i v(0)j −ε

(1)
i y(1)i y(0)j

where x = y(0), v = v(0) and µ(1)
i is obtained by propagating χ back until inside the

neurons of the lower layer. Moreover,

ε
(1)
i =−εc

g(1)′′i

g′(1)i g(1)i

µ(1)
i ζ (1)

i

ζ (1) =C(1)v(0) .

We can create the auxiliary vectors also in an iterative manner by

v(1) = G′1C(1)v(0)

µ(2) = G′2A>χ , µ(1) = G′1C(2)>µ(2) .

This are the common formula for the forward and back propagation of the error
signals v and χ , respectively. Moreover,

ε
(l)
i = εcζ (l)

i µ(l)
i = εcµ(l)

i

(
C(l)v(l−1)

)
i

is the general rule for the channel dependent learning rates in the layers.

15.D.1 Algorithmic Realization

For performance reasons the algorithmic realization uses a row-wise multiplication
denoted by ◦, which is defined for any two vectors a,b ∈ Rk and (n× k) matrix M
as

(a◦b)i = aibi and (a◦M)i j = aiMi j .
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A pseudocode for the learning reads as follows.
In each time step do:

1. Feed-forward sweep of the state xt through the network ψ (xt) to get the activa-
tions of the neurons. Compute for l = 1,2

y(l) = g
(

z(l)
)

with y(0) = xt and
z(l) =C(l)y(l−1)+h(l)

and find the auxiliary vectors

g′(l) = g′
(

z(l)
)
.

2. Determine L according to Eq. (15.79) and determine the generalized pseudoin-
verse L+ = Q(PLQ)−1 P, see Sect. 15.4 with conveniently defined matrices P
and Q.

3. Determine the vectors v = L+ξ and χ = L+>v.
4. Create the auxiliary vectors

v(1) = g′(1) ◦
(

C(1)v(0)
)

, v(0) = v

and
µ(2) = g′(2) ◦

(
A>χ

)
, µ(1) = g′(1) ◦

(
C(2)>µ(2)

)
Moreover,

ε(l) = εcµ(l) ◦
(

C(l)v(l−1)
)

5. Update

C(l) =C(l)+ εcµ(l)v(l−1)>−
(
ε(l) ◦ y(l)

)
y(l−1)>

h(l) = h(l)−ε(l) ◦ y(l)
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The LPZROBOTS Simulator

Abstract: In this chapter we describe our robot simulator. We start with the overall struc-
ture of the software package containing the controller framework, the physics simulator
and external tools. The controller framework makes it very easy to develop and test our
algorithms, be it in simulations or with real robots. The physics simulator can handle rigid
bodies with fixed geometric representation that are connected by actuated joints. Particular
efforts have been undertaken to develop an elaborated treatment of physical object interac-
tions including friction, elasticity, and slip. The chapter also briefly discusses the generation
of virtual creatures, the user interface and the most important features of the LPZROBOTS
simulation environment.

Realistic computer simulations are very important not only for experimental sci-
entists but also for theoretic studies. They allow one to quickly check hypotheses
and algorithms and verify generalizations and approximations that have been done
in the course of analytical derivations. This is especially fitting for robotics, where
the hardware is normally error-prone and requires rather intense maintenance. How-
ever, many argue that robot experiments must be performed with real robots only.
This harsh opinion is rooted in the fact that software controllers tested in simula-
tions often have not been able to reproduce the same results in reality. In our case
we have a different setting. We do not develop static controllers, but instead aim at
the self-organizing of behavior. If self-organization works with complex simulated
systems then it will also work in real systems. The control algorithms adapt to the
specific hardware during the behavior. In this way the behavior will be quantitatively
different on a real robot but the qualitative properties will be the same. Fortunately,
the gap between reality and simulation is also shrinking because we can nowadays
perform physically realistic computer simulations, as you have seen in the numerous
videos and experiments so far.

We developed a simulation software called LPZROBOTS that comes with a re-
alistic physics simulation and is particularly suitable for our research. There are
several distinct features as we will discover below. One of them is the support for
custom materials and their proper interaction. Let us now take a closer look at the
back-stage of our virtual world of playful machines. In the next section we focus on
the overall structure of the simulator. Afterwards the framework for developing con-

293
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trollers is introduced, which is independent of the physics simulator that is described
in Sect. 16.4. It follows a list of highlighted features (Sect. 16.5). A comprehensive
documentation with technical details and the source code is available on the project
website [107].

16.1 Structure

The simulation software is divided into the following parts:

Controller frame-
work:

Implementation of the controllers, neural networks, matrix li-
brary, introspection, and support functions (SELFORG).

Physics simulator: Rigid body dynamics and graphical rendering (ODEROBOTS).

External tools: Visualization tools GUILOGGER and MATRIXVIZ.

The control algorithms are located in an independent package (SELFORG) that
can be used in other simulators or with hardware robots. For the development of our
algorithms it is important to be able to observe the evolution of internal parameters
online and to change some control parameters like learning rates during the runtime1.
For that reason the framework allows for quick controller development and their
flexible connection to robotic systems as well as the ability to connect to external
tools. The next section will introduce this framework. Since the software is written
in C++ we used the concepts of object-oriented programming. To understand the
following text only a few terms need to be known, such as class that refers to an
object type, interfaces which is an abstract object type to specify only the signature
(available functions), and subclass or inheritance for the mechanism to define a
more specific class based on an existing one.

16.2 Controller Framework

The SELFORG framework is designed for connecting a controller to any system, be
it a real robot, a simple academic program, or our full-fledged robot simulator. A
controller is a class that has essentially a single function that receives a vector
of sensor values and returns a vector of motor values. The most important part in
the framework is the wired controller, consisting of a controller and a
wiring paired with some utilities to log, plot and configure the system. The wiring
allows for the preprocessing of sensor and motor values, making the connection to
different systems very easy. For example a subset of sensor values can be selected
or the derivative of a sensor value can be added. Likewise the motor values can be
preprocessed, e. g. to protect the robot hardware from dangerous configurations. The

1 The modification of parameters is only necessary during the test phase. In the robot experiments
we report on the parameters are not changed manually, except states otherwise.
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wired controller might be directly integrated into another program, e. g. into
a real robot control program. Alternatively it might be used within the class agent
together with the representation of a robot. A particular robot class can imple-
mented the details needed for the simulation of the robot or it can implemented the
communication to a real robot. Figure 16.1 depicts the structure and the informa-
tion flow within an agent. All parts of the framework are specified using clear
interfaces, such that controllers, wirings and robots can be interchanged easily. To
make the development of the control algorithms convenient the SELFORG package
contains a matrix library that is described in the following.

Logging and Plotting

Wired Controller

Robot

Agent

Act

Sense step
Control

Sensor values

Motor values

Sensor Preproc.

Motor Postproc.

Wiring Controller

Fig. 16.1: Core architecture of an agent with wired controller and a robot
in the sensorimotor loop. The arrows denote the information flow during one simulation
step.

16.3 Matrix Library

The matrix library is particularly suitable for the development of our controllers but
is nevertheless of general nature. The design is geared to simplicity. Mathematical
formulas can be written almost in a one-to-one fashion in the program code. This
requires a concise syntax and convenient operators.

The main features of the matrix library are automatic memory management, op-
erator overloading, and pure operations. Vectors are treated as matrices with only
one column or one row. For each operation there is a copy version and an in situ
version. The latter can be used for optimization purposes, but require careful think-
ing. The copy operations work like their mathematical counterparts. Their operands
are not changed and the result is a new matrix. All operations perform range checks
and insure dimension compatibility, which can be globally switched off for per-
formance reasons. Beside the usual arithmetic operations for matrices like +,−,∗
we introduce multiplication with a scalar, the exponent and many more useful op-
erations as listed in Table 16.1. Special attention should be given to the exponent
operator, which, depending on the argument, is either the inversion (-1), the identity
matrix (0), the matrix itself (1), the square (2), or the transposed (T ). The latter is
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Table 16.1: Matrix operations of the matrix library (excerpt).

function name op. meaning description
C(A) = C = A copy operation
C.add(A,B) + C = A+B addition
C.sub(A,B) - C = A−B subtraction
C.mult(A,B) * C = A ·B multiplication
C.mult(A,f) * Ci j = Ai j · f scalar multiplication f ∈ R
C.exp(A,i) ^ C = Ai exponent i ∈ (−1,0,1,2,T )
C=A.pseudoInverse() C = A+ pseudoinverse, see Sect. 5.G
C=A.multrowwise(b) & C = A◦b rowwise multiplication
C=A.map(g) Ci j = g(Ai j) function application
C=A.mapP(arg,g) Ci j = g(arg,Ai j) func. appl. with argument

C=A.above(B) C =

(
A
B

)
vertical concatenation

implemented by defining a symbol T = 255, which is therefore just a number and
can be treated accordingly. Another interesting operation is the function applica-
tion operator called map following the style of functional programming. It applies
a function to all elements of a matrix componentwise. For the exponent and the
rowwise multiplication we reuse the operators ^ and & that are originally used for
bit-wise operations. Somewhat counterintuitive is their operator precedence (order
of evaluation), which is lower than for the other arithmetic operations. Since the
precedence cannot be changed in C++ more parentheses must be used.

The following illustrative code example shows the generation of a random matrix

Matrix M(20,5); // 20 time 5 matrix initialized with 0
M = M.map(random_minusone_to_one)*0.01 // assign random values

where double random_minusone_to_one(double) returns a random
number between −1 and 1. The program code for the equation y = tanh(Cx+h) is
for instance

Matrix y = (C * x + h).map(tanh);

which looks very similar to the original mathematical formulation and is therefore
quickly written and more easily understood.

The performance of the code is still high even though new matrices are created for
intermediate results. We use high performance memory operation like memcpy and
memzero to speed up initialization and copy procedures. Additionally, all range
checks can be excluded at compile time after the code was successfully tested.

16.4 Physics Simulator

Let us now come to the actual simulator. In order to write a simulation, the user
defines the constitutes of the virtual world, e. g. the environment, the obstacles, the
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agents and so on. Given that, the simulator enters the main loop and performs iter-
atively physical simulation steps using the “Open Dynamics Engine” (ODE) [154],
which we will shortly discussed in the next section. A control step (Fig. 16.1) is
performed every n-th iteration (specified by the parameter controlinterval).
This allows one to select a certain update rate independent of the step size of the
physical simulator. The update of the graphical display, which is done using the
graphics library “Open Scene Graph” [116], is executed every k-th iteration, where
k is calculated to achieve a proper frame rate of 25 fps. In order to obtain a smooth
and continuous simulation the internal time of the simulation is synchronized with
the real time. Of course, different factors are supported to speed up or slow down.
There are also a variety of additional functions, which can be overloaded to have
sufficient control over the simulation process, e. g. to define custom keystrokes and
to trigger specific events. Let us now take a look behind the curtains to see how the
simulated physics works.

16.4.1 Rigid Body Dynamics — Open Dynamics Engine

The physics simulation is based on the rigid body dynamics of the software library
“Open Dynamics Engine,” short ODE. Rigid body dynamics means that the sim-
ulated world consists of objects with a fixed geometric shape (rigid), e. g. spheres,
boxes, and so forth, and a mass tensor that matches the inertial properties of a body
with that shape. The objects can be connected by different joints, e. g. hinge joints,
sliders, ball joints and so forth, see Fig. 16.2. The joints constrain the relative mo-
tion of the two connected objects. All object follow the Newtonian laws of physics,
namely gravitation, inertial forces, gyroscopic forces and so on. The differential
equations are integrated iteratively using a semi-implicit Euler method. In contrast
to an explicit Euler method this does not lead to an accumulation of the errors in
way that very unphysical effect occur. Nevertheless, it is a first order method and
thus not very accurate. In order to improve the accuracy a small simulation time
steps can be used, which makes the system slower. Our own experiences show that
the simulations run very stable and accurate. For instance a snake robot (Sect. 9.1.4)
with 15 joints actuated by motors in space (no gravity) will stay at the same point in
space for a long time (hours of simulation time) despite the heavy movement of the
joints (induced by motors, see below). Eventually, however it will start to rotate or
move away. These errors are fortunately not critical in our experiments.

One of the most important parts in the rigid body simulation is the detection
and treatment of collisions in order to simulate the interaction of bodies. The ODE
offers routines to check for collisions and proposes a number of so-called contact
points. The treatment of collisions is done via a special contact joint, that is places at
the contact point and exists only for one time step. The contact joints mimic surface
interactions such as friction, elasticity, bouncing and slip. In the following we will
have a closer look at the developed strategy for efficient collisions detection and the
realization of material and surface properties.
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Fig. 16.2: Joints to connect rigid bodies. Hinge joint (upper left), universal joint (upper
right), slider joint (lower left), and ball joint (lower right). Images taken from [154].

16.4.2 Efficient Collision Detection

To make collision detection practically computable also in larger systems ODE uses
so called collision spaces, that group a number of preferably close geometric bodies
together. Thus, robots usually have their own collision space. Collision detection is
first performed on the level of collision spaces using their bounding box, i. e. check-
ing for the intersection of the smallest cubes containing all bodies of a collision
space. Only in the case of an intersection of the bounding boxes the geometric bod-
ies of the two collision spaces must be pairwise tested. Additional collision tests
within each space have to be performed as well.

Since not all collision spaces are supposed to treat internal collisions, there is a
list of spaces to be checked. Further and more importantly not all geometric bodies
are supposed to collide with each other. For instance, bodies connected with joints
should typically not collide since they intersect by construction. To exclude any pair
of bodies we introduced a hash set, which is checked for each potential collision.

16.4.3 Material and Surface Properties

In order to model complex scenarios the collision treatment of the ODE needs to
be augmented. Normally collisions are treated in a global callback function where
the two colliding geometric bodies are given. In order to distinguish between dif-
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Fig. 16.3: Substance-interaction model with two serial spring-damper elements. For
each body we have the elasticity e (damping) and the hardness h (spring constant) forming
a spring-damper element.

ferent physical interactions, each geometric body object carries a substance2

object. The interaction parameters are thus to be obtained through the combination
of the two substances. We consider four different parameters kp, kd , µ , and slip
to describe the interaction. Here kp and kd denote the spring constant and damp-
ing constant respectively, µ is the Coulomb friction constant, and slip is the force
dependent slip (FDS) parameter. FDS is used to model non-coulomb friction that
occurs for example when the wheels of a car starts to slide sideways. More for-
mally, the two contacting surfaces slide past each other with a velocity proportional
to the force that is being applied tangentially to the surface. This differs from nor-
mal (Coulomb) frictional effects since it does not cause a constant acceleration, but
rather leads to a steady velocity.

In order to obtain these parameters from two substances we need a suitable de-
scription of the physical properties and a way to combine them. Our design for the
substance parameters are roughness (r), slip (s), hardness (h), and elasticity (e). The
Coulomb friction parameter µ is obtained by a multiplication of the roughness from
both substances. This results in a high friction for two rough materials but in low
friction, if one of the materials is very smooth (e. g. ice). The slip parameter is the
sum of both slip parameters. The spring and damping constants are calculated us-
ing the schema of two spring-damper elements serially connected as illustrated in
Fig. 16.3.

The spring constant of each collision side is given by the hardness h1 and h2. The
spring constant kp of the entire system is given by

1
kp

=
1
h1

+
1
h2

. (16.1)

2 The name substance was chosen due to the fact that the possibly better fitting term, material, is
already used by the graphics renderer to describe visual surface properties.
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Table 16.2: Substance and interaction parameters.

Parameter Range Interaction Parameter
roughness (r) [0,∞) µ = r1 · r2
slip (s) [0,∞) slip = s1 + s2

hardness (h) (0,∞) kp =
h1 ·h2
h1+h2

(16.1)

elasticity (e) [0,1] kd = h2(1−e1)+h1(1−e2)
h1+h2

(16.2)

The damping constant kd is derived from the elasticities ei of the substances, but
is more difficult to compute. Considering the damping in the form of energy loss
we can write the energy or work done by each spring as: Wi = F · xi, where xi is the
length by which the spring is compressed from the relaxation position (no collision).
The new length of the spring is not known but we can calculate it from the force
using F = hixi, such that we obtain Wi =

F2

hi
. The energy loss through damping is

W D
i = Wi(1− ei). The work of the serially coupled system is given by the sum of

the works. The final damping is now the relative loss of work:

kd =
W D

1 +W D
2

W1 +W2

=
F2(1− e1)/h1 +F2(1− e2)/h2

F2/h1 +F2/h2

=
h2(1− e1)+h1(1− e2)

h1 +h2
(16.2)

Table 16.2 summarizes the parameters and their dependencies.
Now one needs to convert kp and kd to the parameters used by the ODE. There

are two parameters that come directly from the regularization of the constraint equa-
tion and from the joint alignment procedure. According to the manual [154] the two
parameters can be obtained as follows:

ERP=
∆ tkp

∆ tkp + kd
CFM=

1
∆ tkp + kd

The above described approach works very well to mimic the interaction of very
different materials. The simulator comes with a set of standard substances, see Ta-

Table 16.3: Standard substances implemented in LPZROBOTS. Each substance has
only one free parameter. The interval of accepted values is given in the table. The values
are defined ad hoc.

Material roughness hardness elasticity slip
Metal ∈ [0.1,1] 200 0.80 0.01
Plastic ∈ [0.5,1] 40 0.50 0.01
Rubber 3 ∈ [5,50] 0.95 0.00
Foam 2 ∈ [1,30] 0.00 0.10
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Video 16.1: Illustration of the interaction of different materials. All spheres have
the same size and mass. The substances are foam (yellow), rubber (dark brown), plastic
(white), and metal (silver), see Table 16.3. Note the different penetrations (second picture)
and bouncing heights. The video can be watched at http://playfulmachines.
com.

ble 16.3, nevertheless custom substances are also possible. To give an impression
the Video 16.1 shows the bouncing of balls made of the four standard substances.

In order to support also special cases the substance class has an optional
callback function, which can overwrite the default collision treatment. For instance
when a material has different properties in different directions, like the skin of a
snake. Another example are the infrared distance sensors that are implemented with
ray-objects and their sensor value is obtained from collision routines, however no
collision treatment is required. Another example are contact or tactile force sensors.

16.4.4 Motors and Sensors

The joints connecting the rigid bodies can be actuated by different motors. The
motors are connected to the joints and apply torques there. There are three types of
motors, angular motors, PID servos, velocity controlled servos which are described
in the following:

Angular
motor:

It controls the desired angular velocity of the joint and has a maximal
torque it can apply. This velocity is realized in a single simulation time
step, given the maximal torque is not exceeded. Internally this motor
is implemented as a constraint in the equation of the dynamics, such
that it virtually looks ahead in time to take into account all forces that
are applied to that joint in the current simulation time step. In this way
they are very stable and do not lead to jitter, especially in multi-joint
systems. By the way, an electric motor with a strong gearbox behaves
in a similar way.

PID servo: A classical PID (proportional-integral-derivative) controlled servo mo-
tor. The motor values provides the nominal position (∈ [−1,1]) of
the joint and the applied force/torque is calculated with the follow-
ing equation:

http://playfulmachines.com/videos.html#vid:lpzrobots:materials
http://playfulmachines.com/videos.html#vid:lpzrobots:materials
http://playfulmachines.com/videos.html#vid:lpzrobots:materials
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ft = P

(
et +Dėt + I

t

∑
τ=0

eτ

)
(16.3)

where e is the position error (nominal position minus current position),
ė is its temporal derivative and P,D, I are the gain factors. We use
deliberately the factor P to scale the entire force, such that the total
power of the motor can be adjusted. The remaining factors D and I are
now relative and easier to adjust. The factor D scales the derivative,
such that large values avoid overshooting, but also make the servo
slower. For this reason it is also called the damping parameter. The
integral factor I is to cancel offsets due to e. g. constant external forces.
All parameters have to be tuned empirically. In a multi-joint system it
is very difficult to tune them in order to obtain a smooth behavior. For
example the damping term cannot be increased too much because of
the discrete nature of the simulation.

Velocity
controlled
servo:

These servos combine the stability of the angular motors with the po-
sition control of the PID servos. Hence the motor values specify the
nominal position of the joint from which a velocity is computed as

vt =Vet (16.4)

where V is the maximal velocity of the servo. In this way the angular
velocity of the joint is smaller, the smaller the position error, which
in turn avoids overshooting. Since the system is iterated discretely V
is not allowed to be too large, i. e. Vmax = |et |/∆ t. The maximal force
the motor can apply in the current time step is given by

ft = F tanh(1/C+ |et |) (16.5)

where F is the maximal torque of motor in general and C > 0 is a com-
pliance term. For small C the motor has its full power independent of
the position error. This leads to a stiff system without compliance such
that only little feedback from the physical system will be visible in the
sensor values. In this configuration the velocity controlled servo is a
good model of a traditional electrical servo motor. On the other hand if
C is large, the motor has very little power at the target point, such that
it behaves very compliant. Forces that act on the joint will be visible in
small deflections from the target point, much like an elastic system of
muscles and tendons. The Dynamixel servo motors of Robotis [146]
can be configured to have a maximal torque and provides also a posi-
tion sensor, such that Eq. (16.5) can be implemented in hardware.

The velocity controlled servos are very useful to build compliant machines, which
allow the controller to develop a “feeling” of the body. Another actuator is a
speaker that can emit sound signals at different frequencies.
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Let us now consider the available sensors. The following list starts with the pro-
prioceptive sensors (measuring the internal state) and continues with exteroceptive
sensors that sense the external world.

Joint
position:

Each joint can supply the current joint position and angular velocity.
These sensors provide the most important feedback to the controller.

Orientation: An orientation sensor measures the orientation of a part of the body.
There are different representations available: The full orientation
matrix (3× 3), the vector of one internal axis, or the projection of
the internal axes onto the z-coordinate of the global coordinate sys-
tem (z axis looks upwards).

Velocity: The velocity sensor measures the translational and rotational veloc-
ity of a part of the body.

Infrared: Active infrared sensors are popular in robotics to measure the dis-
tance to objects. They emit a light beam in the infrared spectrum
and measure the amount of reflectance, which is proportional to the
distance. In the simulation these sensors are implemented with ray
objects that virtually collide with other objects, such that the distance
can be computed. The sensor has a maximal range where the sensor
value is 0. For close objects the sensor value is 1 and the characteris-
tics in between can be selected to be linear or non-linear. In order to
get a visual feedback of the measurement we render the sensor with
a colored line.

Microphone: The microphone can detect sound signals emitted by a speaker. Dif-
ferent quantities can be measured: Frequency, amplitude, and direc-
tion of the sound source. The implementation is rudimentary and
does not take into account reflections or damping of sound by other
objects.

Camera: The simulator also supports a virtual camera. A picture is captured
each time a control step is performed independent of the frame rate
of the graphical window. The resolution and the field of view can
be configured. Additionally a chain of preprocessors can be defined,
such as color filters, motion detection and so on.

16.4.5 User Interaction

The user interaction with the simulator has different aspects. Operations concerning
the graphical representation of the scene, e. g. camera position, display style or video
recording are accessible through the graphical window. The camera can be manip-
ulated with the mouse in combination with the mouse buttons in different modes,
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which are shortly introduced in Sect. 16.5. Also external forces can be applied to the
robots using the mouse together with the <Ctrl> key. A transparent head-up display
shows the simulation time and the simulation speed with respect to real time. All
available keystrokes can be displayed on demand at a help screen. The second way
of interacting with the simulator is via a console on the terminal window. It provided
an interactive console where parameters can be set and for instance controllers can
be saved. The console features a history, auto-completion and many more character-
istics of a UNIX shell. The interface was intentionally uncoupled from the graphics
in order to be usable in real robot experiments or non-graphical applications. Both
interfaces are depicted in Figure 16.4. Finally, the user can display internal parame-
ters online, such as sensor values and synaptic weights with different custom tools
like our GUILOGGER and MATRIXVIZ as displayed in Figure 16.5 and 16.6.

(a) (b)
Welcome to LpzRobots
-------------------------------------------------------
...
[Simulation Environment]
simstepsize= 0.010000 stepsize of the ...
gravity= -9.810000 strength of gravity

...
[SineController]
period= 50 period of oscillation
phaseshift= 1 phaseshift of channels

...
######
Type: ? for help or press TAB
>
? help list load ls quit set show store view
> ls
Agents ---------------(for store and load)
ID: Name
1: Barrel (Controller and Robot)

Objects --------------(for set and show)
ID: Name
1: Simulation Environment
2: SineController
3: Barrel

> period=10
period = 10.0000

Fig. 16.4: User interface of the LPZROBOTS simulator. (a) Graphical simulation win-
dow; (b) Terminal with console interface.

16.4.6 Creating the Virtual World

This section will give an overview of how to build up virtual worlds in LPZROBOTS.
While designing the simulator we had to combine physical, geometrical and

graphical representations of the objects in the virtual world into one structure. This
structure is called primitive and can have all of these properties. There are also
cases where no physical body or geometric representations are required or wanted.
For example, static objects in the world, like walls or the floor, do not need a mass
and impulse because they are considered to be unmovable. Likewise a weight in-
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Fig. 16.5: GUILOGGER with two controlled Gnuplot windows. In the main window
(right) a set of channels is selected. Their temporal evolution is shown in the subwindows
(left), here sensor values and motor values, and synaptic weight of the controller.

Fig. 16.6: Visualization tool MATRIXVIZ. The (left) window displays the entries of a
12× 12 controller matrix (C1) and the (right) window shows the time evolution of the
sensor value vector x.
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side of a robot, e. g. for balancing, does not need a geometric shape for collision
detection. The primitive class has flags for these cases. To build objects in the
simulator one constructs primitives like spheres, boxes, capsules, cylinders or com-
bined shapes and connects them by joints, which in turn can have motors attached to
them. Eventually, the building blocks of the simulation must be positioned correctly.
Generally there are two ways to do that, either with a quaternion and a translation
vector or with a 4×4 matrix containing both at once. We chose the latter, because it
is much simpler in concatenation and application of transformations. A special case
of homogeneous coordinates is used, which uses four dimensional vectors contain-
ing (x,y,z,w) where x,y,z code the space coordinates and w is 0 for a orientation
vector and 1 for a position in space. The transformation matrices contain a 3×3 ro-
tation matrix and a translation vector. By construction the translation is only applied
to position vectors as seen on the following equation

(
x y z w

)
r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
tx ty tz 1

=


r11x+ r21y+ r31z+ txw
r12x+ r22y+ r32z+ tyw
r13x+ r23y+ r33z+ tzw

w


>

. (16.6)

The matrix representation enables to concatenate transformations via simple matrix
multiplication. For complex objects like a multi-segment arm one can recursively
add one segment after another by only multiplying relative transformations with the
transformation matrix of the previous segment. In pseudo code we may write for a
linear chain of segments:

m←globalPose
createSegmentAt(m)
for all l ∈ localTransformations do

m← l ∗m
createSegmentAt(m)

end for
The robots and other complex objects are thus programmed in the code directly.
This may sound cumbersome at the first glance but it is not so hard if local transfor-
mations are used. In this way the construction of a complicated virtual robot like a
dog-shaped creature can be implemented relatively easily. Another aspect is that the
programmed robot is much more flexible than one created with a graphical editor.
For example the legs of a robot can be generates in a for-loop and a parameter can
determine the number of legs. Many of the robots in our simulator have a set of
parameters to configure them to the needs of the experiment.

To set up complicated wall formations it is of course very useful to have a graph-
ical editor. We make use of the 2D-CAD program xfig [153], with which the walls
can be drawn. The program also supports a depth value for each line, which is used
for the height of the walls. Figure 16.7(b) shows an environment created in this way.
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16.5 Highlights

Apart from the above mentioned features the simulator has many interesting prop-
erties, some of which will be listed in the following.

Flexibility: The robots and controllers can be flexibly connected, such that a
controller can be tested on many robots. The simulations are pro-
grammed in C++ such that customizations are easily implemented,
for instance keystrokes, changes in the environment or certain sched-
uled events. New components, like new robots, controller, servos or
the like can also be added by the user in its own simulation.

Simulation
speed:

The speed of the simulation can be controlled by a single factor,
determining the ratio between simulation time and real time. The
simulation is synchronized with the clock so that a homogeneous
time flow is achieved independent of the currently available CPU
resources, provided that they are sufficient. This synchronization can
also be turned off in order to run at maximal speed. Depending on
the complexity of the simulation the speedup is typically above five
and up a few hundred fold on a nowadays PC.

Camera
control:

The user can operate the camera in different modes and control its
movements with the mouse. The modes include a static camera that
can be swayed and tilted up and down and moved in all directions.
Another mode is the following mode that automatically moves the
position of the camera relative to a selected robot. The TV mode
points the view of the camera towards a selected robot. All camera
movements are additionally smoothed to avoid unnatural jumps for
details see [59].

Video
recording:

To capture the simulation in a movie, the user can at any time start
and stop the recording of a video. This might slow down the simu-
lation speed, however the video is kept at the right rate.

Multi-
threading:

Since computers nowadays have several processing cores it is impor-
tant to parallelize the execution of code. The simulator can option-
ally run the graphics, physics, and controllers in separate threads. To
be able to reproduce results, the handling of random numbers was
modified to cope with the parallel processing.

Playgrounds: In order to create an appropriate environment for robots there are
several obstacles and rectangular and round arenas available. Ad-
ditionally, a customized wall configuration can be created with the
common 2D-CAD program xfig [153] and imported into the sim-
ulator, see Figure 16.7.

Terrains: For more challenging environments, a terrain using a height-map
bitmap can be created, see Figure 16.4.
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(a) (b)

Fig. 16.7: Different Environments with obstacles. (a) A set of rectangular arenas
stacked into each other (simple for-loop); (b) A wall configuration drawn with xfig.

16.6 Summary

This chapter provided a brief overview of the robot simulator LPZROBOTS, featur-
ing much more than could be highlighted here. Complex virtual robots and environ-
ments can be set up in a short amount of time and efficient simulations are possible.
We developed a material interaction model that allows the user to specify intuitive
material properties and therewith simulate more realistic simulations.

16.6.1 Credits

The design and the major part of the implementation was conducted by one of the
authors (G. M.). Further credits and thanks go to Frank Güttler, Frank Hesse, Mar-
cel Kretschmann, Dominique Schneider, Jörn Hoffmann, Jörg Weide, and Antonia
Siegert.
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Discussion and Perspectives

This book started with a question. Now, more than 300 pages and, if you were
eager, nearly 30 experiments later, let us try to draw a balance. Have we solved the
problem of getting robots into controlled activities without telling them what to do,
without giving a task, a goal, or any other external pressure for development? The
answer to this question is a clear yes. We have formulated a general principle—
homeokinesis—that was seen to provide, in a natural and unbiased way, the desired
drive to activity while still ”keeping things under control.”

The second part of our original question—what may the emerging behaviors look
like—is of a more difficult nature. If there is nothing prescribed from outside, can
we expect any systematics at all in the behaviors? And in what way, if any at all, are
behaviors related to the physical dynamics of the body in its environment?

Results
In order to find answers we started with the investigation of simple one- and two-
dimensional systems. The results are very clear there. In the most simple cases,
we find that homeokinetic learning drives the agent into a specific working regime1,
where it is actively taking decisions while still being very sensitive to the influence
of the environment. If the controller is enlarged in its functionality, we observed
the emergence of a searching behavior that can be described as a systematic self-
exploration of the behavior space. This has many interesting consequences such as
the emerging cooperation in high-dimensional systems with decentralized homeo-
kinetic control (chain of wheeled robots and ARMBAND). When connected to a
complex real or virtual robot, homeokinetic learning was observed in many experi-
ments to recognize and excite the natural modes of the system in a rather straight-
forward way—both the BARREL and the SPHERICAL were found to self-explore the
variety of their rolling modes in a seemingly systematic way, the SLINGING SNAKE
was surprisingly driven by its two-motor head into a slinging whole-body motion,
and the SPHERICAL adapted its rolling patterns to the geometry of the environment
just by its rolling activities. In a similar way, embodiment-related motion patterns

1 At the so-called effective bifurcation point.

309
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were also excited in several hardware machines like the SEMNI and the ROCKING
STAMPER with different and partly strange sensor-motor combinations. In those ex-
amples homeokinetic learning revealed another of its astonishing properties—the
emergence of a tight sensorimotor coordination that can be traced back to the sensi-
tization effect.

Another feature is the element of surprise, hinting at a certain creativity, evident
for instance in the case of the BARREL by the emergence of the precession mode,
a new mode that is latent in the physical system, waiting so to say for getting rec-
ognized and being excited by the controller. This is a particularly nice example of
what we call body-inspired control. In a sense, we observe how the “brain” learns
to “feel” the physics of the body and how to excite its most fundamental modes by
getting into a kind of functional resonance with the body.

Importantly, the emerging self-exploration is not just a scanning of the full pa-
rameter space but is characterized by a systematic, self-induced restriction to the
subspace of embodiment related behaviors. Moreover, this emerging dimension re-
duction can be traced back to the symmetries and to the physical properties of the
body.

Can we expect similar results in the high-dimensional systems—the actual tar-
get group of our high-flying ambitions? The picture is less clear in this case but
it reveals already several of its facets. In principle there is no difference between
low-dimensional and high-dimensional systems, but the characteristics are more
obscured because of the dramatically increased complexity. Nevertheless, the emer-
gence of specific, low-complexity motion patterns is quite obvious. The emerging
dimension reduction has many far reaching consequences. Among them is the ob-
served scalability of the homeokinesis approach—although we are dealing with a
state-parameter space of several hundred dimensions without any prestructuring, all
examples run on a normal PC in real time.

The examples chosen for investigation and proposed as experiments to the reader
comprise various robots ranging from dog-like, to snake-like up to humanoid robots
in different situations. The aim of the experiments is to understand how the con-
troller learns to “feel” the specific physical properties of the body in its environ-
ment. These very high-dimensional systems do not lend themselves easily to ana-
lytical considerations so that we have chosen physical conditions that might help
to better bring out the characteristics of the process. Examples of that kind of scaf-
folding are suspending the HUMANOID like a bungee jumper, the RHOENRAD, or
the high bar. Interestingly, in all situations the robots develop whole-body motion
patterns that seemingly are related to the specific environmental situation: the DOG
starts playing with a barrier eventually jumping or climbing over it; the SNAKE de-
velops coiling and jumping modes; we observe emerging climbing behaviors of a
HUMANOID seemingly trying to get out of a pit; and witness wrestling like scenar-
ios if a HUMANOID is encountering a companion. Eventually, in our robotic zoo all
kinds of robots are brought together so that homeokinesis can prove its robustness
against heavy interactions with other robots or dynamical objects.

While being many and varied and often unexpected, the emerging low-dimen-
sional modes are not at all random but are controlled in a definite way in our tightly
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coupled sensorimotor loop so that they are reproducible under similar conditions.
Identified and stored away with a context tag, these modes may be used as be-
havioral primitives in more complex behavioral architectures. Being long-lived but
transient in nature, these modes may emerge and decay in a loose succession so
that the homeokinetic system realizes a self-exploration of its dimension-reduced
behavior space much in the same way as was made explicit in the low-dimensional
systems.

How Can This be Useful?
Another of our ambitions is to be useful in real world robotics where task orientation
prevails and self-organization still seems to be at a rather weak position. We have
already given several possibilities how homeokinetic learning can become immedi-
ately useful, for instance in the self-rescue scenarios and by its inherent creativity
to find new solutions in strange and unexpected situations. Another point is an im-
pact on the control of highly compliant machines with their inherent whole-body
involvement. In such systems, the emerging dimension reduction of homeokinetic
learning might be of direct help for developing novel control strategies. A related
point of immediate interest is the use of homeokinetic learning as an exploration
strategy for reinforcement learning. The established reduction of the search space to
the physically relevant subregions may help to escape the curse of dimensionality
that jeopardizes any conventional search strategy.

On a more general level, we support a new direction of research, guided self-
organization, treating three different scenarios in the book. The idea is to gently
orient the self-organization process towards desired directions, much in the sense of
a liberal child-raising. Guided self-organization is still in its infancy but, in the con-
sidered scenarios, we could show how the integration of external learning signals
into the self-organization process can be done without perturbing the subtle features
of the latter. The examples treated were reaching from direct prescriptions for the
motor signals to the integration of unspecific reinforcement signals to directly hint-
ing of how to break a certain symmetry, considering both low- and high-dimensional
systems. The results are encouraging and suggest the use of homeokinesis with guid-
ance as a kind of generator for basic sensorimotor patterns that may form building
blocks in behavior-based, task-oriented robotics or in reinforcement learning.

Most of the applications done so far are restricted to simulated robots, but the
most ambitious goal is the application to real robots, considered as the ultimate
“acid test” for the method. The real robots applications (SEMNI, real BARREL, and
others) done so far have all been restricted to the case of two motors so that the full
complexity of the method could not been tested yet. But the perspectives are clear.
Like the story told in the SEMNI case, the important advantage of our approach is
its from scratch philosophy. Take the homeokinetic brain, connect it to the sensors
and motors of any real robot (see cookbook for the details) and look what happens.
While interesting results may not be expected if the robot is very rigid, just carrying
out the prescribed motor patterns in a faithful way, it will generate most vivid and
often surprising behaviors if the robot is underactuated and/or compliant to external
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influences and the intrarobot interactions. While a nightmare to classical methods of
behavior generation, the uncertainties and contingencies prevailing in these systems
are well in agreement with the basic working principle of homeokinesis. In fact,
homeokinesis is feeding on the differences between the target and the true response
of the body to its intended actions, in this way getting the information about the
physical reactions of the body.

Speculative ideas
Robots as helpmates of humans have to fulfill specific tasks. As it turned out over
the decades of active robotics research, the way towards this goal is long, tedious,
and full of obstacles. This book proposes a detour: let us forget for a while the con-
centration on special properties or skills like reaching, grasping, walking, jumping,
or swimming. Instead, give the robots more autonomy, letting them unfold their be-
haviors in a playful exploration of their potential motion patterns outside of that
narrow focus. Goal orientation will be introduced only in a second step by methods
we also have addressed in this book.

Speculatively, the detour may even be the faster way to the goal, as is often the
case. Taking the detour also may provide a fresh view on robotics, extending the
expectation horizon from pure goal orientation to the more playful behaviors seen
in young children playing, acrobatics, or modern dancing to give a few examples.
Instead of making the robot a slave to our intentions, the new freedom for individual
development given to the robot, letting it find out by itself about the best symbiosis
of body, brain and environment, can also create a new, more friendly relationship
between robots and humans.

Eventually, we want to speculate about the relation to biology. Homeokinesis has
been demonstrated to provide an internal drive for the unfolding of behavior without
any external pressure. Interestingly, a homeokinetic system is realized very simply.
In the cases considered and tested in this book, all you need are two neural networks
of very simple structure plus some standard backpropagation and backprojection
procedures to provide the signals for a (kind of) Hebbian learning process. There
is nothing in these mechanisms that should not be realizable in natural systems, in
higher animals at least. Our question: could nature have discovered such a structure
in evolution? If so, this might help to better understand the internal mechanisms un-
derlying the drives for playing of animals and young children. This will be difficult
to decide in biology but the robotic experiments can help to find the right ques-
tions and possibly also give some prototype patterns that could be matched against
biological findings.
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[101] Markelić, I., Zahedi, K.: An evolved neural network for fast quadrupedal lo-
comotion. In: M. Xie, S. Dubowsky (eds.) Advances in Climbing and Walk-
ing Robots, Proceedings of 10th International Conference (CLAWAR 2007),
pp. 65–72. World Scientific Publishing Company (2007)

[102] Martius, G.: Goal-oriented control of self-organizing behavior in autonomous
robots. Ph.D. thesis, Georg-August-Universität Göttingen (2010). http:

//resolver.sub.uni-goettingen.de/purl/?webdoc-2459

[103] Martius, G., Der, R.: Simulation software for The Playful Machine. http:

//playfulmachines.com/book/software (2011)
[104] Martius, G., Herrmann, J.M.: Taming the beast: Guided self-organization of

behavior in autonomous robots. In: S. Doncieux, B. Girard, A. Guillot, J. Hal-
lam, J.A. Meyer, J.B. Mouret (eds.) From Animals to Animats 11, LNCS, vol.
6226, pp. 50–61. Springer (2010). DOI 10.1007/978-3-642-15193-4_5

[105] Martius, G., Herrmann, J.M.: Tipping the scales: Guidance and intrinsically
motivated behavior. In: Advances in Artificial Life, ECAL 2011, pp. 506–
513. MIT Press (2011)

[106] Martius, G., Herrmann, J.M., Der, R.: Guided self-organisation for au-
tonomous robot development. In: F. Almeida e Costa, L. Rocha, E. Costa,
I. Harvey, A. Coutinho (eds.) Advances in Artificial Life 9th European Con-
ference, ECAL 2007, LNCS, vol. 4648, pp. 766–775. Springer (2007)

[107] Martius, G., Hesse, F., Güttler, F., Der, R.: LPZROBOTS: A free and powerful
robot simulator. http://robot.informatik.uni-leipzig.de/software
(2010)

[108] Maslow, A.H.: Motivation and personality. Harper, New York (1954)
[109] Maturana, H., Varela, F.: Autopoiesis and cognition: the realization of the

living. Boston studies in the philosophy of science. D. Reidel Pub. Co. (1980)
[110] Mazzapioda, M.G., Nolfi, S.: Synchronization and gait adaptation in evolv-

ing hexapod robots. In: S. Nolfi, G. Baldassarre, R. Calabretta, J.C.T. Hallam,
D. Marocco, J.A. Meyer, O. Miglino, D. Parisi (eds.) From Animals to An-
imats 9, SAB 2006, Rome, Italy, September 25-29, 2006, Proc., LNCS, vol.

http://resolver.sub.uni-goettingen.de/purl/?webdoc-2459
http://resolver.sub.uni-goettingen.de/purl/?webdoc-2459
http://playfulmachines.com/book/software
http://playfulmachines.com/book/software
http://robot.informatik.uni-leipzig.de/software


P
e
rs

o
n
a
l 
C
o
p
y328 References

4095. Springer (2006)
[111] McGeer, T.: Passive dynamic walking. Int. Journal of Robotics Research

9(2), 62–82 (1990). DOI 10.1177/027836499000900206
[112] Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contem-

porary Physics 46, 323 (2005). DOI 10.1080/00107510500052444
[113] Nolfi, S., Floreano, D.: Evolutionary Robotics. The Biology, Intelligence, and

Technology of Self-organizing Machines. MIT Press, Cambridge, MA (2001)
[114] Nolfi, S., Parisi, D., Elman, J.L.: Learning and evolution in neural networks.

Adaptive Behavior 3(1), 5–28 (1994). DOI 10.1177/105971239400300102
[115] Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm

Intelligence 2, 1–23 (2008). DOI 10.1007/s11721-007-0009-6
[116] OpenSceneGraph: Open source high performance 3d graphics toolkit. http:

//www.openscenegraph.org (2008)
[117] Oudeyer, P.Y., Kaplan, F., Hafner, V.: Intrinsic motivation systems for au-

tonomous mental development. Evolutionary Computation, IEEE Transac-
tions on 11(2), 265–286 (2007)

[118] di Paolo, E.: Homeostatic adaptation to inversion of the visual field and other
sensorimotor disruptions. In: J.A. Meyer, A. Berthoz, D. Floreano, H. Roit-
blat, S.W. Wilson (eds.) From Animals to Animats, SAB’2000, pp. 440–449.
MIT Press (2000)

[119] di Paolo, E.: Organismically-inspired robotics: Homeostatic adaptation and
natural teleology beyond the closed sensorimotor loop. In: K. Murase,
T. Asakura (eds.) Dynamical Systems Approach to Embodiment and Social-
ity, pp. 19 – 42. Advanced Knowledge International, Adelaide (2003)

[120] Pasemann, F.: Discrete dynamics of two neuron networks. Open Systems &
Information Dynamics 2, 49–66 (1993)

[121] Pasemann, F.: Dynamics of a single model neuron. Intl. Journal of Bifurca-
tion and Chaos 2, 271–278 (1993)

[122] Pasemann, F.: A simple chaotic neuron. Phys. D 104, 205–211 (1997)
[123] Pasemann, F.: Complex dynamics and the structure of small neural networks.

Network: Computation in Neural Systems pp. 195–216 (2002)
[124] Pasemann, F., Hild, M., Zahedi, K.: SO(2)-networks as neural oscillators. In:

J. Mira, J. Alvarez (eds.) Computational Methods in Neural Modeling, pp.
144–151. Springer, Berlin, Heidelberg, New York (2003)

[125] Paul, C.: Morphology and computation. In: Proc. Int. Conf. on Simulation of
Adaptive Behavior, pp. 33–38. MIT Press (2004)

[126] PC Watch: http://pc.watch.impress.co.jp (2003)
[127] Pearl, J.: Causality. Cambridge University Press (2000)
[128] Pearson, K., Gordon, J.: Spinal reflexes. In: E. Kandel, J.H. Schwartz, T.M.

Jessell (eds.) Principles of Neural Science, 4 edn., pp. 713–736. McGraw-
Hill, New York (2000)

http://www.openscenegraph.org
http://www.openscenegraph.org
http://pc.watch.impress.co.jp


P
e
rs

o
n
a
l 
C
o
p
yReferences 329

[129] Peters, J., Schaal, S.: Natural Actor-Critic. Neurocomputing 71(7-9), 1180–
1190 (2008)

[130] Peters, J., Vijayakumar, S., Schaal, S.: Natural Actor-Critic. In: Proc. 16th
European Conf. on Machine Learning (ECML 2005), pp. 280–291. springer
(2005)

[131] Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New
View of Intelligence. MIT Press, Cambridge, MA (2006)

[132] Pfeifer, R., Gómez, G.: Morphological computation – connecting brain, body,
and environment. In: B. Sendhoff, E. Körner, O. Sporns, H. Ritter, K. Doya
(eds.) Creating Brain-Like Intelligence, LNCS, vol. 5436, pp. 66–83. Springer
Berlin / Heidelberg (2009). DOI 10.1007/978-3-642-00616-6_5

[133] Pfeifer, R., Iida, F., Gómez, G.: Morphological computation for adaptive be-
havior and cognition. International Congress Series 1291, 22 – 29 (2006).
DOI 10.1016/j.ics.2005.12.080

[134] Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and bio-
logically inspired robotics. Science 318, 1088–1093 (2007)

[135] Pfeifer, R., Lungarella, M., Sporns, O., Kuniyoshi, Y.: On the information
theoretic implications of embodiment – principles and methods. In: Lun-
garella et al. [96], pp. 76–86

[136] Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Boston
(1999)

[137] Pisella, L., Mattingley, J.B.: The contribution of spatial remapping impair-
ments to unilateral visual neglect. Neuroscience and Biobehavioral Reviews
28, 181–200 (2004)

[138] Pitti, A., Lungarella, M., Kuniyoshi, Y.: Exploration of natural dynamics
through resonance and chaos. In: T. Arai, R. Pfeifer, T.R. Balch, H. Yokoi
(eds.) IAS, pp. 558–565. IOS Press (2006)

[139] Polani, D.: Foundations and formalizations of self-organization. In:
M. Prokopenko (ed.) Advances in Applied Self-organizing Systems, pp. 19–
37. Springer (2008)

[140] Polani, D., Sporns, O., Lungarella, M.: How information and embodiment
shape intelligent information processing. In: Lungarella et al. [96], pp. 99–
111

[141] Popp, J.: Spherical robots. http://www.sphericalrobots.com (2004)
[142] Prokopenko, M.: Design vs self-organization. In: M. Prokopenko (ed.) Ad-

vances in Applied Self-organizing Systems, pp. 3–17. Springer (2008)
[143] Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289

(2009)
[144] Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model.

In: Proc. Computer Graphics (SIGGRAPH ’87), no. 4 in 21, pp. 25–34 (1987)
[145] Rittscher, J., Blake, A., Hoogs, A., Stein, G.: Mathematical modelling of an-

imate and intentional motion. Phil. Trans. R. Soc. Lond. B pp. 475–490

http://www.sphericalrobots.com


P
e
rs

o
n
a
l 
C
o
p
y330 References

(2003)
[146] Robotis Ltd.: Robotis web page. http://www.robotis.com (2009)
[147] Rodriguez, A.: Guided self-organizing particle systems for basic problem

solving. Ph.D. thesis, University of Maryland (College Park, Md., USA)
(2007)

[148] Salge, C., Polani, D.: Information-driven organization of visual receptive
fields. Advances in Complex Systems 12(3), 311–326 (2009)

[149] Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learn-
ing by imitation, vol. 1431, pp. 199–218. oxford university press (2004)

[150] Schmidhuber, J.: A possibility for implementing curiosity and boredom in
model-building neural controllers. In: Proceedings of the First International
Conference on Simulation of Adaptive Behavior, pp. 222–227. MIT Press,
Cambridge, MA, USA (1990)

[151] Schmidhuber, J.: Driven by compression progress: A simple principle ex-
plains essential aspects of subjective beauty, novelty, surprise, interesting-
ness, attention, curiosity, creativity, art, science, music, jokes. Anticipatory
Behavior in Adaptive Learning Systems pp. 48–76 (2009)

[152] Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: Theory and ap-
plications for autonomous robot architectures. Robotics and Autonomous
Systems, 16, 213–245. (1995)

[153] Smith, B.V.: Xfig drawing program for the X windows system. http://www.
xfig.org (2008)

[154] Smith, R.: Open Dynamics Engine – open source, high performance library
for simulating rigid body dynamics. http://ode.org (2008)

[155] Sporns, O., Lungarella, M.: Evolving coordinated behavior by maximizing
information structure. In: L.M. Rocha, L.S. Yaeger, M.A. Bedau, D. Flore-
ano, R.L. Goldstone, A. Vespignani (eds.) Proc. Artificial Life X, pp. 323–
329. Intl. Society for Artificial Life, MIT Press (Bradford Books) (2006)

[156] Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for
evolving large-scale neural networks. Artif. Life 15, 185–212 (2009). DOI
10.1162/artl.2009.15.2.15202

[157] Steels, L.: The autotelic principle. Embodied Artificial Intelligence pp. 629–
629 (2004)

[158] Steffe, L.P.: The learning paradox: A plausible counterexample. In: L.P.
Steffe (ed.) Epistomological foundations of mathematical experience, pp. 26–
44. Springer, New York (1991)

[159] Steingrube, S., Timme, M., Woergoetter, F., Manoonpong, P.: Self-organized
adaptation of a simple neural circuit enables complex robot behaviour. Nature
Physics 6, 224–230 (2010)

[160] Steinhage, A., Schöner, G.: Self-calibration based on invariant view recogni-
tion: Dynamic approach to navigation. Robotics and Autonomous Systems
20, 133–156 (1997)

http://www.robotis.com
http://www.xfig.org
http://www.xfig.org
http://ode.org


P
e
rs

o
n
a
l 
C
o
p
yReferences 331

[161] Stewart, B.H., Thompson, J.M.: Nonlinear Dynamics and Chaos. John Wiley
and Sons (2002)

[162] Still, S., Precup, D.: An information-theoretic approach to curiosity-driven
reinforcement learning. Theory in Biosciences, to appear (2011)

[163] Stitt, S., Zheng, Y.F.: Distal learning applied to biped robots. In: Proc. of the
IEEE Intl. Conf. on Robotics and Automation, pp. 137–142. IEEE Computer
Society (1994)

[164] Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven informa-
tion acquisition in non-deterministic environments. In: Proceedings of the
International Conference on Artificial Neural Networks, pp. 159–164 (1995)

[165] Strogatz, S.: Nonlinear Dynamics and Chaos. Addison Wesley, New York
(1994)

[166] Sutton, R.S., Barton, A.G.: Reinforcement learning: Past, present and future.
In: SEAL, pp. 195–197 (1998)

[167] Suykens, J.A.K., Vandewalle, J.P.L., Moor, B.L.R.D.: Artificial neural net-
works for modelling and control of non-linear systems. Sringer, New York
(1996)

[168] Svennebring, J., Koenig, S.: Building terrain-covering ant robots: A fea-
sibility study. Auton. Robots 16(3), 313–332 (2004). DOI 10.1023/B:
AURO.0000025793.46961.f6

[169] The Robot Studio sarl.: http://www.therobotstudio.com (2011)
[170] Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control ap-

proach to reinforcement learning. Journal of Machine Learning Research 11,
3137–3181 (2010)

[171] Tononi, G., Cirelli, C.: Sleep function and synaptic homeostasis. Sleep
medicine reviews 10, 49–62 (2006)

[172] Trianni, V., Dorigo, M.: Self-organisation and communication in groups of
simulated and physical robots. Biological Cybernetics 95, 213–231 (2006).
DOI 10.1007/s00422-006-0080-x

[173] Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc.
237, 37 (1952)

[174] Turrigiano, G.G.: Homeostatic plasticity in neuronal networks: The more
things change, the more they stay the same. Trends in Neuroscience 22,
221–228 (1999)

[175] Turrigiano, G.G., Nelson, S.: Hebb and homeostasis in neuronal plasticity.
Current Opinion in Neurobiology 10, 358–364 (2000)

[176] Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing ner-
vous system. Nature Reviews Neuroscience 5, 97–107 (2004)

[177] Twickel, A.v., Pasemann, F.: Reflex-oscillations in evolved single leg neu-
rocontrollers for walking machines. Natural Computing 6, 311–337 (2007).
DOI 10.1007/s11047-006-9011-y

http://www.therobotstudio.com


P
e
rs

o
n
a
l 
C
o
p
y332 References

[178] Ventre-Dominey, J., Vallee, B.: Vestibular integration in human cerebral cor-
tex contributes to spatial remapping. Neuropsychologia 45, 435–439 (2007)

[179] Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M.,
Thelen, E.: Autonomous mental development by robots and animals. Science
291, 599 – 600 (2001)

[180] Werbos, P.J.: Beyond regression: new tools for prediction and analysis in the
behavioral science. Ph.D. thesis, Harvard University, Cambridge, MA (1974)

[181] Wikimedia Commons: http://commons.wikimwedia.org (2010)
[182] Wikipedia: Self-organization – wikipedia, the free encyclopedia (2009). [On-

line; 28-May-2009]
[183] Wikipedia: Delta rule — wikipedia, the free encyclopedia (2010). [Online;

accessed 11-February-2011]
[184] Wiley, K.: Gnat clouds, flocking algorithm. http://keithwiley.com/

artificialLife/gnatCloud.shtml (1999)
[185] Wischmann, S.: Neural dynamics of social behavior: An evolutionary and

mechanistic perspective on communication, cooperation, and competition
among situated agents. Ph.D. thesis, University of Bonn, Germany (2008)

[186] Withall, M., Hinde, C., Stone, R.: An improved representation for evolving
programs. Genetic Programming and Evolvable Machines 10, 37–70 (2009).
DOI 10.1007/s10710-008-9069-7

[187] Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for
motor control. Neural Networks 11, 1317–1329 (1998)

[188] Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum.
Trends in Cognitive Sciences 2, 338 – 347 (1998)

[189] Yaeger, L.: Computational genetics, physiology, metabolism, neural systems,
learning, vision and behaviour or polyworld: Life in a new context. In: Ar-
tificial Life III, Vol. XVII of SFI Studies in the Sciences of Complexity, pp.
263–298. AddisonWesley (1994)

[190] Yang, L., Epstein, I.R.: Oscillatory turing patterns in reaction-diffusion sys-
tems with two coupled layers. Physical Review Letters 90(17) (2003)

[191] Zahedi, K., Ay, N., Der, R.: Higher coordination with less control – A result
of information maximization in the sensorimotor loop. Adaptive Behavior
18(3-4), 338–355 (2010). DOI 10.1177/1059712310375314

[192] Zhabotinsky, A.M.: Belousov-zhabotinsky reaction. Scholarpedia 2(9), 1435
(2007)

[193] Ziemke, T.: On the role of emotion in biological and robotic autonomy.
Biosystems 91, 401–8 (2007)

http://commons.wikimwedia.org
http://keithwiley.com/artificialLife/gnatCloud.shtml
http://keithwiley.com/artificialLife/gnatCloud.shtml


P
e
rs

o
n
a
l 
C
o
p
yIndex

A

acceleration sensors 155, 272
activation function 34, 51, 51
ant 15
Anthropomimetic 3
anti-Hebbian 288
antiphase teaching 244
ARMBAND 219, 243, 246–252, 258, 309
artificial life 16
autocatalytic chemical reaction 13
autonomy 1, 59, 280
Autopoiesis 2
Autotelic 2, 79
axis-orientation sensors 163

B

backpropagation 53
BARREL 4, 27, 27–33, 64–66, 68–70, 73,

76, 88, 89, 143–146, 162, 163, 178,
178–180, 190, 220, 253, 309–311

Belousov-Zhabotinsky reaction 15
Bénard cells 12
bifurcation

catastrophic 46
cusp 45, 46
effective 39, 41, 56, 111
Hopf 129
Neimark-Sacker 129, 133
period doubling 128
pitchfork 37, 47, 110
saddle node 128

bootstrapping 66, 73, 185, 188
brain-body system 6, 27, 75, 182
Braitenberg vehicles 49

C

camera 303
chain of robots 34, 41–45, 116–118
circular basin 192
clipping 269
closed loop control 21, 24
coevolution 19
cognitive deprivation 185, 187, 239
collision

detection 298
treatment 298
with obstacle 42, 50

compliant 3, 4, 153, 203, 271, 302
console 30, 31, 304
contingency 1, 6
controller 24
cookbook 271
cross-motor teaching 243
cross-sensor teaching 252
current sensors 155, 272

D

damping
learning rule 85, 187, 270
PID 302
spring 299, 300

dark side 81, 274
decentralized control 44, 115–120
degeneration see deprivation
delta rule 65
delta-rule 52
deprivation 185, 187
DOG 201, 204, 205, 207–209, 216, 220, 310
dynamics model 26, 27, 77
Dynamixel 154, 302

333



P
e
rs

o
n
a
l 
C
o
p
y334 Index

E

ECCEROBOT 3, 4, 271
effective bifurcation point see

bifurcation: effective
effective state 101, 225
elasticity 299
entanglement 94, 115, 211

strong 134, 141
weak 133, 135

entropy 44
error norm 268
evolutionary algorithms 19, 258
externalizing complexity 24
exteroceptive 24, 48, 272, 303

F

fighting 215
forward model 25, 26, 183
FOURWHEELED 49, 116, 117
frequency sweeping 142, 143, 145
friction 299

G

generalized pseudoinverse 195, 277, 281,
284, 289

goal-oriented behaviors 259
goal-oriented behaviors 235
gradient descent 27, 53, 109, 196, 230, 238
guided self-organization 235, 237
guided self-organization 258
GUILOGGER 31, 305

H

Hebbian 52, 288
HEXAPOD 220
HIPPODOG 207, 209
homeokinesis 75–99, 149
homeostasis 59, 60, 64, 68
homeostat 59, 61, 61
HUMANOID 201, 205, 206, 209–214, 216,

219–221, 310

I

idealized world see SHORT CIRCUIT
imitation learning 242
in phase teaching 244
informative actions 185
infrared sensors 24, 48, 163, 173, 272, 303
initialization 272

interaction representation 224, 226
interaction term 224, 225
inverse model 183

J

Jacobian matrix 225
joint

ball 298
hinge 298
slider 298
universal 298

joint position sensors 303

K

Khepera 43
Kronecker delta 53, 81, 262

L

learning rate 26, 65, 83, 254
learning rule 67, 84, 85, 108, 131, 187, 195,

262, 283
limit cycle 113, 132, 139
locomotion 69, 120, 177, 248, 258
logarithmic error 268
lolloping mode 33
LONGVEHICLE 115–117, 220, 243
LPZROBOTS 31, 293, 296–303
Lyapunov exponents 91, 230

M

magic circle 147
matrix library 295
mean value theorem 100
membrane potential 35, 45, 50, 81, 121
model 26
Moore-Penrose pseudoinverse 105, 268,

277, 289
morphological computation 1, 182
motor branch 196, 277
motor-space 268, 280, 282
motors 272, 301

N

neural network 26, 50, 65, 75
neuron 34, 50, 75, 81, 120
noise 21, 26, 38, 95, 100, 202, 225

P

pairwise teaching 244
parameter runaway 194, 267, 274, 284
passive walker 33



P
e
rs

o
n
a
l 
C
o
p
yIndex 335

period-2 cycle 128
period-4 cycle 133, 150, 171
PID 28, 155, 301
playful 1, 182
postdiction 103
prediction error 26, 67, 95, 187, 224, 226,

266
preprocessing 272, 294
primary gradient 84, 101, 139
problem specific error function see PSEF
proportional-integral-derivative see PID
proprioceptive 24, 201, 272, 303
PSEF 236, 238
pseudoinverse see generalized pseudoin-

verse, see Moore-Penrose pseudoinverse
punishment 253

Q

quasi-periodic 129
quaternion 306

R

rate-coding 50
reaction-diffusion system 13–14, 20
Real BARREL 181
reconstruction error 78, 226
regularization 281, 287
reinforcement learning 258
resonance 148, 159, 214
reward 253
RHOENRAD 201, 213, 214, 310
ROCKING STAMPER 172–175, 177, 178,

182, 310
rowwise multiplication 296

S

saturation region 36, 81, 115, 134, 158, 238,
287

scaffolding 206, 207
scaling 250
self-amplification 10, 13, 15, 21, 99
self-organization 9–21, 107, 201, 235
self-organized criticality 16
self-organizing map 15
self-regulation 16, 59, 64, 75, 139
self-rescue 218
self-supervised 107, 245
self-amplification 43
self-referential dynamical system 75, 90,

107, 127
SEMNI 154–157, 159–161, 172, 182, 310,

311

sensitization 91, 115
sensor branch 195, 196, 263
sensor values 24
sensorimotor loop 24
sensors 272, 303
servo motor 154, 175, 301
SHORT CIRCUIT 129–151, 188, 334
sigmoid function 51
simulator see LPZROBOTS
SLIDER ARMBAND 119, 120, 220
SLINGING SNAKE 168–174, 203, 271, 309
slip 299
SNAKE 188, 190, 191, 199, 201, 217, 218,

220, 221, 265, 310
SO(n) see special orthogonal group
special orthogonal group 97, 99, 130
SPHERICAL 4, 5, 162, 162–169, 192–194,

197, 198, 220, 240–242, 253–258, 309
split control see decentralized control
spontaneous symmetry breaking 20, 96, 99,

166
spring-damper 299
substances 300
synchronization 43, 117

T

tanh 51
Taylor expansion 55, 225
teaching 238, 236–242
temperature effect 95, 99, 117, 232
terrain 307
tight coupling see sensorimotor loop
time-loop error 78
TLE see time-loop error
TWOWHEELED 44, 81, 86, 87, 115–117,

185–188, 238–240, 243–246, 252, 257

U

ultrastability 59, 61
underactuated 120, 168, 191, 203, 271
update rules see learning rules

V

video recording 303
voltage control 157, 158

W

wheel counters 24, 116
working regime 40, 44, 112
wrestling 215


	Introduction
	Self-Organization in Nature and Machines
	Self-Organization — The Physical Perspective
	Phase Transitions
	Convection Patterns
	Reaction-Diffusion Systems
	Examples from Biology

	Self-Organization in Machines
	Swarms and Multi-Robot Systems
	Behavioral Self-Organization

	Exploiting Self-Organization for Robot Control
	Mechanisms of Self-Organization
	Self-Organization of Robot Behavior


	The Sensorimotor Loop
	Sensorimotor Loop — The General Case
	The Controller
	Forward Model and Sensorimotor Dynamics

	Dominated by Embodiment: The Barrel
	Properties
	Open Loop Control
	Closed Loop Control

	Analyzing the Loop
	Feedback Strength
	Fixed Points
	Dynamics as Gradient Descent
	The Effective Bifurcation Point
	Effective Bifurcation Point and Explorative Behavior

	Extending the Parameter Space
	Bifurcation Scenario.
	Application: Biasing the Behavior

	Expanding the Body
	Realization by Neural Networks
	Rate-Coding Neuron Model
	Supervised Learning
	Feed-Forward Networks
	Recurrent Networks

	Summary
	Appendix Mathematical Details
	Stability Analysis
	Determining the Effective Bifurcation Point


	Principles of Self-Regulation — Homeostasis
	History and Development of Homeostasis
	Ashby's Approach
	The Homeostat
	Learning Homeostat
	Relating Time Scales

	Self-Regulation
	First Ideas
	Learning the Controller from Specialized Models
	Homeostasis: Self-Regulated Stability
	Conclusions and Outlook

	Appendix  Learning a Behavior from its Forward Model 
	Appendix A Bootstrapping Scenario

	A General Approach to Self-Organization — Homeokinesis
	Homeokinesis — Introduction
	Time-Loop Error
	Discussion
	Standard Setting
	Landscape of the Time-Loop Error

	Homeokinetic Learning
	Canonical Learning Rule
	Explicit Learning Rules 
	Self-Actualization, Adaptivity, and Sensitivity — Example
	The Homeokinetic Barrel

	Key Features of Homeokinesis
	Homeokinesis as a Self-Referential Dynamical System 
	Sensitization — The Driving Force of Homeokinesis
	State-Parameter Interplay
	Temperature Effect
	Symmetry Groups as Attractors*
	Spontaneous Symmetry Breaking 

	Appendix Formalizations
	Appendix Effective States
	Appendix Average Gradient
	Appendix Remarks on Reconstruction vs. Postdiction
	Appendix Derivation of Eq. (5.16)
	Appendix Derivation of Eqs. (5.22, 5.23)
	Appendix Moore-Penrose Pseudoinverse

	From Fixed-Point Flows to Hysteresis Oscillators
	Time-Loop Error in One-Dimensional Systems 
	Explicit Learning Rules and Fixed Point Flows
	Learning Rule
	Learning under Real World Conditions
	Relation to the Effective Bifurcation Point*

	Extending the Parameter Space — The Hysteresis Oscillator
	Embodiment and Situatedness — Robotic Experiments
	Wheeled Robots
	Spontaneous Cooperation in a Chain of Wheeled Robots
	Emergent Locomotion of the Slider Armband

	Relation to Other Systems
	Appendix Fixed-Point Flow
	Appendix Towards the Effective Bifurcation Point
	Appendix Frequency of Hysteresis Oscillations

	Symmetries, Resonances, and Second Order Hysteresis
	Properties of the Two-Dimensional Sensorimotor Loop
	Two-Dimensional Loop
	Bifurcation Scenario
	Properties of SO( 2)  Dynamics
	The Effect of the Bias

	Homeokinetic Learning
	State-Parameter Dynamics
	Oscillatory Behavior
	Low Frequency Oscillations
	Theory of Oscillatory Modes*

	Second Order Hysteresis
	Bias Dynamics and SO( 2)  Oscillations
	Frequency Sweeping and Hysteresis in Frequency Space
	Frequency Sweeping in Real Systems
	Frequency Sweeping in 3D

	Resonances — A Case for Embodiment
	Appendix Properties of Oscillatory Modes
	Derivation of Eq. (7.16).
	The Period-4 Cycle


	Low Dimensional Robotic Systems
	Semni
	Construction
	Experiments

	Spherical
	Construction
	Self-Exploration of Rolling Modes
	Situatedness — How the Environment Shapes the Behavior
	Situatedness — Adapting to the Environment

	Slinging Snake
	Construction
	Experiments

	Rocking Stamper
	Hardware
	Experiments

	Barrel
	Creativity in New Situations
	Creativity Using the Real Barrel

	Summary

	Model Learning
	Cognitive Deprivation and Informative Actions
	Demonstration by the TwoWheeled
	Deprivation Effect 
	Homeokinetic Learning and Bootstrapping
	Planar Snake
	Spherical Robot in a Basin
	Discussion

	Extending the Forward Model 
	Getting Misled by the Forward Model
	Including the Sensor Branch
	Ambiguity of the Extended Model 
	Increasing Awareness of Causality
	Experiment with the Spherical Robot

	Summary
	Appendix Ambiguities in the Sensorimotor Loop

	High-Dimensional Robotic Systems
	Underactuated and Compliant
	Dog and HippoDog
	Humanoid
	Snakes — Adaptation and Spontaneity
	Self-Rescue Scenario
	World of Playful Machines
	Discussion

	Facing the Unknown — Homeokinesis in a New Representation*
	Interaction Representation of Sensorimotor Dynamics
	Extending the Time Horizon
	Preliminaries: Orbits in Dynamical Systems
	Interaction Representation of a Time Series
	Relation to the Time-Loop Error
	General Multiple-Step Learning Rule

	Homeokinesis as a Flow of Lyapunov Exponents
	Appendix Proof of Eq. (11.13)
	Appendix Derivation of the Interaction Representation 

	Guided Self-Organization — A First Realization
	Integration of Problem Specific Error Functions
	Guidance by Teaching
	Direct Motor Teaching
	Experiment

	Direct Sensor Teaching and Distal Learning
	Experiment


	Channeling Self-Organization
	From Spontaneous to Guided Symmetry Breaking
	Multiple Motor Relations
	Guiding Towards Directed Locomotion
	Scaling Properties

	Summary

	Reward-Driven Self-Organization
	Reinforcing Speed
	Reinforcing Spin
	Discussion

	Algorithmic Implementation
	The sox Algorithm
	Extensions and Corresponding Meta-Parameters
	Putting it Together — The Universal Learning Rules

	Cookbook for Playful Machines
	Type of Robots — Mechanical Setup
	Initialization Procedures — Motor Babbling
	Choosing the Meta-Parameters
	Parameter Runaways — The Dark Side

	Increasing Internal Complexity
	Controller Architecture
	Learning Rule

	Generalized Pseudoinverse*
	Examples

	Simplified Algorithms
	Avoiding Matrix Inversion
	Matrix Inversion by Iteration

	Motor-Space Approach
	Reconstructing Previous Motor Values
	Learning Rules 
	Using the Generalized Pseudoinverse

	Appendix Learning with Generalized Pseudoinverse
	Appendix Stability of the Gradient Descent 
	Regularization of g Terms

	Appendix Learning Rules for Arbitrary Neuron Types
	Appendix Derivation of the Multilayer Learning Rule
	Algorithmic Realization


	The LpzRobots Simulator
	Structure
	Controller Framework
	Matrix Library
	Physics Simulator
	Rigid Body Dynamics — Open Dynamics Engine
	Efficient Collision Detection
	Material and Surface Properties
	Motors and Sensors
	User Interaction
	Creating the Virtual World

	Highlights
	Summary
	Credits


	Discussion and Perspectives
	List of Figures
	List of Videos
	List of Experiments
	References
	Index

